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Lecture Notes

Mathematics (MAT 226)

1 Tangents and Normals

The slope of the tangent to a curve at a
given point is equal to the value of the
derivative at that point.

The normal is perpendicular to the tan-
gent, so its slope is the negative recipro-
cal of the slope of the tangent.

To find the equation of the tangent at a
given point, we can evaluate the deriva-
tive at the point, and then use the point-
slope form of the equation of a straight
line. The equation of the normal can
then be found in a similar way, using the

negative reciprocal of the slope of the tangent.

Example

Tangent

Normal

1. Find the equation of the tangent and normal of the curve y = z? — 4z + 6 at

(1,3) .

2. Find the equation of the tangent and normal of the curve 16z* + 9y* = 144 at

(2,—2.98) .

3. Find the angle of intersection of the curves:
y=a>+z—1

yp =2 —5x +5

at the point (1,1) .

Reading:

Sec. 28-1

Problems:

Ex. 1 (P. 809) # 1-13 (odd)

Unit 4: Applications of the Derivative



Mathematics (MAT 226) Lecture Notes

2 Maximum, Minimum and Inflection Points
2.1 Increasing and decreasing functions

Consider the function y = f(x) whose ¥
graph is shown on the right.

Any tangent line drawn to the left of point

M will have a positive slope, as will any M
tangent line drawn to the right of point m.

Since the slope of the tangent line at any

point is equal to the value of the first deriva- m
tive at that point, this means that the first
derivative is positive to the left of M and / X
to the right of m. We also see that, as x in-
creases, the function increases in the region
to the left of point M and in the region to
the right of point m.

For points between M and m, any tangent line will have a negative slope, and the
function decreases from left to right in this region.

We can summarize these results by stating the following rules:

e If the first derivative is positive, the function is increasing.

e If the first derivative is negative, the function is decreasing.

(It is assumed here that x is always increasing, i.e. we are observing the behavior of
the function as we move from left to right along the z-axis.)

We can also state the above rules in symbols as follows:

o If f/(z) >0, f(x) is increasing.

o If f(z) <0, f(x) is decreasing.
Examples

1. Is the function y = 23 — 42% + 5 increasing or decreasing at x = 37?

2. For what values of x is the function y = 2? — 42 + 7 increasing, and for what
values of x is it decreasing?

2 Unit 4: Applications of the Derivative
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2.2 Concavity

Concavity refers to the curvature of the
graph of a function. As we have already
seen in the previous unit, when the sec-
ond derivative is positive, the slope of the
curve is increasing, which means that the
curve is concave upward. When the sec-
ond derivative is negative, the curve is con-
cave downward. At a point where the curve
changes from being concave upward to con-
cave downward (or vice-versa), the second
derivative is zero. This is illustrated in the
diagram on the right.

Examples

y'>0
(concave upward)

Point of inflection

X

y” < 0
{concave downward)

1. Is the function y = 23 — 422 + 5 concave up or down at z = 3?7

2. Find the regions of concavity of y = 2? — 4x + 7.

2.3 Stationary points

A stationary point is a point at which the
first derivative is zero (i.e. the tangent is
horizontal at the point).

Points M, m and X in the diagram are all
stationary points.

Point M is called a relative maximum point.
This means that the value of y is greater at
M than at any other point near it.

|~

Point m is called a relative minimum point. This means that the value of y is less at

m than at any other point near it.

Point X is a stationary point, but it is neither a maximum nor a minimum point.

As can be seen in the diagram, functions change from increasing to decreasing and
vice-versa at stationary points that are relative maxima and minima.

To find the stationary point(s) of a function, set the first derivative equal to zero and
solve for x. Then substitute in the original function to find the y—coordinates of the

stationary points.

Unit 4: Applications of the Derivative
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Example

Find the stationary point(s) of the function y = z* — 3z + 1.

2.4 Testing for maximum or minimum points

We have seen that the coordinates of the stationary points are found by setting the
first derivative to zero, but this does not tell us whether each point is a maximum, a
minimum or neither. To make this determination, we use the ordinate test, the first
derivative test, or the second derivative test which are described below:

2.4.1 Ordinate test

The ordinate test determines whether a point is a relative maxi-

mum or minimum by evaluating the function y = f(z) at points \‘W
neighbouring the stationary point. It is clear from the diagrams 1

at right that: |

e The height of the curve on either side of a
minimum point is greater than it is at the
minimum point

Maximum

e The height of the curve on either side of a /
maximum point is less than it is at the
maximum point

To use the ordinate test, find the y-value at a point just to the left of the stationary
point, and at a point just to the right of the stationary point. If both calculated y-
values are greater than the y-value at the stationary point, it is a relative minimum.
If both calculated y-values are less than the y-value at the stationary point, it is a
relative maximum. If one of the y-values is greater and one is less than the y-value at
the stationary point, it is neither a minimum nor a maximum.

4 Unit 4: Applications of the Derivative
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2.4.2 First derivative test

Referring to the diagrams on the right, and based on
what we have already said about increasing and decreas- \ /
] Minimum

ing functions, we can state the following rules:

e The first derivative is negative to the left and
positive to the right of a relative minimum

point. Maximum
e The first derivative is positive to the left and / \

negative to the right of a relative maximum
point.

2.4.3 Second derivative test

We have already seen that the second derivative is a measure of
the rate of change of the slope of a curve. Thus, if the second \
derivative is positive in an interval, the curve is concave upward Mnimium
in that interval. If the second derivative is negative in an interval,
the curve is concave downward in that interval.

Maximum

Since a curve is concave upward at a minimum point and con- / \
cave downward at a maximum point (see diagram), we have the

following rules for determining whether a given stationary point
is a maximum or minimum:

e If the second derivative is positive, the stationary point is a relative minimum.
e If the second derivative is negative, the stationary point is a relative maximum.
e If the second derivative is zero, the test is inconclusive.

Note that, if the second derivative is zero, the first derivative test or the ordinate test
must be applied to determine whether the point is a maximum, a minimum, or neither.

Examples

1. Apply all three of the above tests to the stationary points of the function y = 2% — 3z + 1
found in the previous example.

2. Find the maximum and minimum points for the implicit relation 22 + y? — 2x + 4y = 4.

Unit 4: Applications of the Derivative 5
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2.5 Inflection Points

An inflection point is a point where the curvature Y
changes from concave upward to concave down-
ward, or vice-versa. This means that the second B
derivative changes sign at an inflection point. 4 /—\ \
Points A and B in the graph on the right are in- ™2 e o
flection points.

X

To find inflection points, set the second derivative
equal to zero and solve for x. Then check to see whether the second derivative changes
sign on either side of the point(s).

Examples

Find the inflection point(s) of the following functions:

2.6 Systematic Procedure for Finding Maximum, Minimum
and Inflection Points of a Function

The formula sheets at the end of the unit summarize the steps for finding critical points
(stationary or inflection points). Use that procedure to find any maximum, minimum
and inflection points for the following function:

y = 2" — 182°

Reading:

Sec. 28-2

Problems:

Ex. 2 (P. 819) # 1-23 (odd), 27, 29

6 Unit 4: Applications of the Derivative
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3 Curve Sketching

While it is usually possible to graph a function simply by plotting pairs of points, this
is not always the best way to get an overall picture of how the function behaves. By
looking at certain characteristics of the function, we can often get a good idea of what
the graph of the function will look like, and make a sketch without using a table of x-
and y-values. Going through these steps will enable us to analyze and interpret the
characteristics of the function as well as allowing us to sketch the function.

Depending on the particular function, some or all of the following characteristics may
be used in sketching the graph of a function.

3.1 Type of function

Certain types of functions have characteristic shapes, a few of which are illustrated
below:

Function Type Example Graph
Y

Quadratic y=2>-32+5

| X
Y
Reci | 5 K
eciproca y=- \ 3%
¥
Square Root y =2z X
Y /
S
Exponential y=-e€" X

Unit 4: Applications of the Derivative 7
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3.2 Intercepts

Intercepts are points where a curve crosses a coordinate axis. To find them do the
following;:

y-intercepts : Set = equal to zero and solve for y.

x-intercepts : Set y equal to zero and solve for x.
Example: Find the 2 and y-intercepts of the function y = 2% — 5z + 6.

y-intercepts: (z =0)
y=0"-50)+6=6
y-intercept: (0,6)

x-intercepts: (y = 0)
2> =51+ 6=0

(x—2)(x—=3)=0
r—2=0Qorx—-—3=0

r=2orx=3

z-intercepts: (2,0), (3,0)

3.3 Symmetry

If the equation remains unchanged when —y is substituted for y, the curve is
symmetric about the z-axis.

If the equation remains unchanged when —x is substituted for x, the curve is
symmetric about the y-axis.

If the equation does not change when —zx is substituted for x and —y is substituted
for y, the curve is symmetric about the origin.

¥ ¥

I~ A Y

Symunetry about x-axis Symmetry about y-axis Symmetry about origin

8 Unit 4: Applications of the Derivative
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Examples

1.y*—3x=0
If —y is substituted for y we get

(—y)* =3z = 0
v*—3x = 0

Thus the curve is symmetric about the z-axis.
2. y=a*+ 222
If —x is substituted for z we get

y = (—x)'+2(—z)?
= 2t 4+ 222

Thus the curve is symmetric about the y-axis.

3. y=a°—x

If —z is substituted for z and —y is substituted for y we get
—y=(—2)®—(~2)= -2 +2

Dividing both sides by —1 gives

y=2°—2x

Thus the curve is symmetric about the origin.

3.4 Extent (Domain and Range)

For some functions, there may be certain = or y values that are not allowed. For
example, some x values may lead to division by zero, or may result in a negative
number under a square root sign. The set of allowed x values is the domain of the
function. The set of y values that correspond to the allowed x values is the range of
the function.

Example
y=v5—z

For this function, only x values less than or equal to 5 are allowed, so the domain of
the function is x < 5. Since the square root function by definition gives only
non-negative values, and since the x values in the domain make possible any such
value, only y values greater than or equal to zero are possible. (The range of the
function is y > 0.)

Unit 4: Applications of the Derivative 9
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3.5 Asymptotes
If y approaches infinity (positive or negative) as x approaches some value (from below
or from above), there will be a vertical asymptote at that x value.

If y approaches some value as x approaches positive or negative infinity, there will be
a horizontal asymptote at that y value.

Example

As x approaches 1 from below, y becomes infinite in the negative direction. As x
approaches 1 from above, y becomes infinite in the positive direction. In symbols:
3 3

lim = —00 lim = +00
z—1-x — 1 z=1tx — 1

Thus x = 1 is a vertical asymptote.

As x approaches positive infinity, y approaches 0 from above. As x approaches
negative infinity, y approaches 0 from below. In symbols:

lim 3 =0 lim =0

T—00 T — z——0c0 L — 1

Thus y = 0 is a horizontal asymptote.

3.6 Large x values

What happens to y as x gets very large in the positive or negative direction? In
addition to horizontal asymptotes one may find the function is approximately equal to
a simpler function for large x which will determine its large x behaviour.

Example
y=2a*—322+5

Since ; -
lim (z*—32>+5) = lim :1:4(1— )%:1:4,

2
r—=+00 r—+00 T T

it follows that as  — 400, y — oo since the z* term predominates.

3.7 Stationary Points (Maxima and Minima)

Find stationary points by setting 3’ equal to zero and solve for x. Apply the second
derivative test (or the first derivative or ordinate tests if the second derivative test
fails) to determine if a stationary point is a maximum, a minimum or neither.

10 Unit 4: Applications of the Derivative
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Example
Y = 2 4 3z
Take the derivatives:
y = 2x+3
y// — 2

Solving 0 = 2x + 3 gives x = —3/2. The corresponding y value is
y=(-3/2)*+3(-3/2) =-9/4 .

Since y”(—3/2) = 2 is greater than zero we have a relative minimum at (—3/2,—-9/4).

3.8 Increasing and Decreasing Functions

e When ¢/ is positive the function is increasing.

e When 3/ is negative the function is decreasing.

Example

Continuing with the last example, we now solve y’ < 0:

2r+3 < 0
20 < =3
- 3
x —_—
2

Hence when x < —3/2, 3/ < 0, so the function is decreasing when z < —3/2. Similarly
solving 2z + 3 > 0 shows ¢’ > 0 when x > —3/2 so the function is increasing when
x> —3/2.

Note that regions of increasing or decreasing are often broken up by maxima and
minima since g’ often changes sign at such points. In this example there was a
minimum with z-coordinate of —3/2.

3.9 Inflection Points

e Set y” equal to zero and solve for x. Test to see whether the sign of 3’ changes
on either side of the x value. If it does, it is an inflection point.

Unit 4: Applications of the Derivative 11
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Example
Y= —x? + 222
Take the derivatives:
y = —32°+4x
y' = —6x+4

Solving y” = 0 results in z = —4/ — 6 = 2/3 with corresponding y coordinate of
y=—(2/3)%+2(2/3)* = 16/27. To the left and right of z = 2/3 = .667 we have
y"(.6) = .4 >0 and y”(.7) = —.2 < 0 so there is an inflection point at (2/3,16/27).

3.10 Curvature

e When ¢” is positive the function is concave upward.

e When 3" is negative the function is concave downward.

Example

Contining the last example we solve the inequality 3" < 0:

—6r+4 < 0
—6r < —4
- —4
.1' PR
—6
- 2
ZI/‘ J—
3

Hence when x > 2/3, y" < 0, so the function is concave downward for z > 2/3.
Similarly solving —6z + 4 > 0 shows y” > 0 when z < 2/3 so the function is concave
upward when x < 2/3. (Note in solving the above inequality we had to change the
direction of the inequality because we divided (or multiplied) by a negative quantity.)

Note that regions of curvature may be separated by inflection points as can be seen
here with an inflection point with z-coordinate of x = 2/3.

3.11 Summary of Steps in Curve Sketching

The above steps for curve sketching are summarized on the formula sheets at the end

of the unit. Follow through them as you do systematic curve sketches of the following
functions.

12 Unit 4: Applications of the Derivative
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Examples

Sketch the graphs of the following functions:

Reading:

Sec. 28-3

Problems:

Ex. 3 (P. 823) # 1-21 (odd)

Unit 4: Applications of the Derivative
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4 Newton’s Method

Newton’s method is a numerical method for solving equations. Newton’s method
involves making an initial guess as to the solution of an equation of the form

f(z) = 0, then refining this guess to get a better approximation of the solution. The
process is repeated until the desired degree of accuracy is obtained.

The root, or solution, of the equation, is the value of x at which the graph of the
function crosses the z-axis.

Let x1 be the first guess of the root. y=f)

The slope of the tangent at z; is given by

£ (2)) = @ )

Solving for h, we get

Root

= /) o

_—

Tangent

Let x5 be the point where the tangent crosses the z-axis.

Ty = Z‘l—h
~ f(=)
A

In general, if z,, is the n** approximation of the solution, the (n + 1)** approximation
is given by the following formula:

Tpt1 = Tp — f/ (f[,‘n) (1)

Examples

1. Use Newton’s method to find the positive root of the equation z* + 8z — 12 =0
to two decimal places.

14 Unit 4: Applications of the Derivative
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2. Use Newton’s method to find the positive root of the equation 22 = v/2z + 1 to
three decimal places.

Reading:

Sec. 28-4

Problems:

Ex. 4 (P. 825) # 1-11 (odd)

Unit 4: Applications of the Derivative 15



Mathematics (MAT 226) Lecture Notes

5 Rates of Change

5.1 Introduction

Recall that the value of the first derivative gives the rate of change of a function with
respect to the independent variable.

Example

Mlumination (/) from a light source is inversely proportional to the distance

squared (d?) from the source. If the illumination from a light source is 702 lux at a
distance of 3.25 m, what is the rate of change of illumination with respect to distance
at 3.25 m?

5.2 Equations of Motion

An important case of a rate of change is that of position with time. Position can be
measured in one spatial dimension or higher. As well we can speak of angular position
changing in time.

5.2.1 Straight-line motion

If an object is moving along one dimension (perhaps straight up and down or along a
straight horizontal line) we can give its position by stating its displacement s along
that axis. If it is moving along the axis then s is a function of time, s(t).

The wvelocity of a moving object is defined as the instantaneous rate of change of
displacement with respect to time, i.e. the derivative of displacement with respect to
time.

ds
== 2
V= (2)

The acceleration of a moving object is defined as the instantaneous rate of change of
the velocity with respect to time. This is the derivative of the velocity, or the second
derivative of the displacement.

dv  d?%s
=% ae @

Note that the velocity and acceleration themselves will, in general, depend on time.
Example

A ball thrown straight up has a vertical displacement given by

s = 30t — 4.9¢>

16 Unit 4: Applications of the Derivative
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where s is the vertical displacement in metres and ¢ is the time in seconds. Find

a) Its velocity as a function of time

The greatest height reached by the ball

)
b) Its acceleration as a function of time
c)

)

d) The velocity of the ball when it reaches the ground. (Answer to 2 significant
digits.)

5.2.2 Curvilinear Motion

Curvilinear motion is motion which is not in a straight line. It may occur in two or
three spatial dimensions. We will consider two spatial dimensions but our results are
easily generalized to three. In two spatial dimensions the position is determined by
the displacent vector s = (x,y) from some fixed origin. Since the position is changing
in time it is given by the vector function s(t) = (x(t),y(t)), where x(t) and y(t) are
just real functions giving the z- and y-coordinates at some time ¢.

With two spatial dimensions the velocity v = (v,,v,) and acceleration a = (a,, a,) are
also vectors. Their components are determined by differentiating s = (z,y)
component-wise with respect to time as shown on the following table:

Vector X-component y-component
dx dy
Velocity v = (v,, v Uy = — v, = -2
Y vz, vy) dt Yo dt
dv, d*x dv, d?*y
Acceleration a = (ag,a,) | Gy = — = — | 4y = —2 = —=
(42, ay) .  dt2 | Y dt di?

To find the magnitude and direction of the velocity or acceleration, find the x and y
components of the velocity or acceleration then find the magnitude and direction from
the components as done when converting from rectangular to polar vectors in

Math 120.

Example
A point moves so that its horizontal and vertical displacements are given by

42 — 5
2 — 3¢

xrx =

where z and y are in metres, ¢ is in seconds.

Unit 4: Applications of the Derivative 17
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1. Find the magnitude and direction of its velocity when ¢t = 1.25 s. (Give the
answers to 3 significant digits)

2. Find the acceleration (z and y components) at ¢ = 1.25 s.

Projectiles Projectile motion is the special case of curvilinear motion which occurs
when an object is shot or thrown with an initial velocity v = (voz, voy) and
subsequently only feels a downward acceleration (negative y direction) due to gravity.

The motion of a projectile moving in the earth’s gravitational field is then described
by the following equations for x and y:

T = Upgt
y o= vgt—

Here vy, is the initial velocity x component, v, is the initial velocity y component, g
is the acceleration of gravity (9.8 m/s? or 32 ft/s?). These are all constants while ¢ is
time. One can solve for the velocity and acceleration of a projectile once and for all by
differentiating components. The veolocity v = (v, v,) = (dz/dt, dy/dt) has
components:

Vr = Yoz
vy = Vgy — gt
while the acceleration a = (a,,a,) = (dv,/dt,dv,/dt) has components:
a, = 0
a, = —g
Example

An arrow is shot with initial speed of 220 ft/s at an angle of 33.0°. Find the position
and velocity (components) at time ¢ = 4.00 s

18 Unit 4: Applications of the Derivative
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5.2.3 Rotational motion

An object that is rotating, such as a horse on a merry-go-round, can have its position
specified by the angle 6 it makes with a fixed set of coordinates with origin at the
centre of rotation. If the merry-go-round is moving in time then one has the angle 6(t)
at time ¢.

The angular velocity, w, of a rotating body is defined as the instantaneous rate of
change of the angular displacement, 6.

df

=7 (4)

w

The angular acceleration, «, of a rotating body is defined as the instantaneous rate of
change of the angular velocity, w.

L do 0
Cdt di?

(5)

The SI units of angular velocity are rad/s, and the SI units of angular acceleration are
rad/s?.

Example

The angular displacement of a rotating body is given by
0 = 184 + 271¢°

Find the angular velocity and angular acceleration at t = 1.25 s.

Reading:

Sec. 29-1; 29-2

Problems:

Exercise 1, p. 830 # 1-7 (odd); Exercise 2, p. 837 # 1-19, 22, 24

Unit 4: Applications of the Derivative 19
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6 Related Rate Problems

If a problem involves two variables, both of which vary with respect to time, and the
relationship between the two variables is known, it is possible to express the time rate
of change of one in terms of the time rate of change of the other. This is done by
differentiating the equation relating the variables with respect to time. The steps to
be followed are outlined on page 838 of the text and are summarized on page 33 at
the end of this unit.

Examples

1. A leaking pipe drips water on a floor creating a circular pool of water whose
area is increasing a constant rate of 2.00 cm?/s. Find the rate at which the
radius of the pool is changing when the radius is 5.00 cm.

2. A spherical balloon is being blown up at a constant rate of 2.00 m?/min. Find
the rate at which the radius is increasing when it is 3.00 m.

3. A tank in the shape of an inverted cone has a radius of 8.00 m at the top and a
height of 15.0 m. At the instant when the water in the tank is 5.00 m deep, the
surface level is rising at a rate of 0.500 m/min. Find the rate at which water is
being added.

Reading:

Sec. 29-3

Problems:

Exercise 3, p. 841 # 1-29 (odd) — except # 13

20 Unit 4: Applications of the Derivative
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7 Optimization Problems

Optimization problems require us to find the value of the independent variable that
results in either a maximum or minimum value of the dependent variable. The steps
for solving optimization problems are given on page 845 of the text and summarized
at the end of these notes on page 33. Effectively one is just finding the maxima and
minima of functions derived from a word problem.

Examples

1. What are the dimensions of the rectangle with the largest area that can be
enclosed with a perimeter of 16.0 m?

2. An architect is designing a rectangular building in which the front wall costs
twice as much per linear metre as the other 3 walls. The building is to cover
1350 m?. What dimensions must it have to minimize the cost of the walls?

3. A construction company desires to build an apartment
building in the shape of a rectangular parallelpiped
(shown) with fixed volume of 32000 m3. The building
is to have a square base. In order to minimize heat loss,
the total above ground surface area (the area of the four
sides and the roof) is to be minimimized. Find the op-
timal dimensions (base length = and height h) of the 2N
building. x

4. A can is to be made in the shape of a right circular cylinder. Find the optimal
dimensions (radius r and height h) which maximize its volume if it is to have a
fixed total surface area a. (Your expressions for r and A should be in terms of
the constant a.) Find the ratio % of this optimal can. Why would a
manufacturer want to have a maximal container volume for a fixed surface area?

Reading:

Sec. 29-4

Problems:

Ex. 4 (p. 850) # 7,9, 11, 17, 27, 29

Unit 4: Applications of the Derivative 21
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8 The Differential of a Function

8.1 Definition

The differentials dz and dy for a function f(z) are defined as follows:

dx is an arbitrary change in x (analagous to an increment Ax).

dy is defined by the equation

Note that the above equation can be rearranged to write the ratio of dy to dx as
follows:

dy
@—f(ﬂf)

Thus the derivative, %7 can now be viewed as the quotient of the two differentials, dy
and dz.

Geometric meaning of the increment, Ay y
and the differential, dy:

e Ay is the change in y on the curve
for a given change in =, Ax.

e dy is the change in y along the tan-
gent for a given change in z, dzx (or

Ax). —
Examples ng{

Find the differential dy for each of the following:

1.y =4a® — 2?
B xr
e +1

2.y

3.0 —2zy+yP =7

22 Unit 4: Applications of the Derivative
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8.2 Estimating Small Changes in a Function Using Differen-
tials

If Az is small, then the increment Ay is approximately equal to the differential dy,
i.e., setting dr = Az in our differential formula

dy
dy = —=d
4 dx v
gives
d
Ay ~ Y g
dx

The calculation of the differential is often simpler than calculation of the increment,
as illustrated in the first example below.

Examples

1. Estimate the change in the function y = 32* when x changes from 3.00 to 3.01.
Compare the estimate with the exact value of Ay.

2. A metal ball when heated increases in radius from 1.250 ¢cm to 1.252 cm.
Estimate the resulting change in volume.

8.3 Approximate Volumes of Shells and Rings

The volume of a thin shell or ring is estimated as the change in volume when the
radius (or other linear dimension) increases by an amount equal to the wall thickness.

In symbols,

AV =~ ﬂAr
dr

Examples

1. (a) Derive a formula for the volume of material in a closed thin-walled cubical
box of edge length L and wall thickness .

(b) Use the formula to estimate the volume of material in a cubical box 75.0
cm on a side with walls 0.240 cm thick.
2. (a) Derive a formula for the volume of material in a metal ring of radius r,
height h and thickness t.

(b) Use the formula to find the volume of material in a ring 25.0 cm in
diameter, 3.00 cm high and 0.120 cm thick.
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8.4 FErrors in Calculated Quantities

If a measured quantity has an absolute error Ax, a quantity y calculated from it will
have an absolute error given, to a good approximation, by

dy
L Ax 7
0 (7)
The relative error, Ay/y, can be approximated by dividing the right hand side of the

last equation by y.

Ay =~

Examples
1. What error in the area of a square room results from an error of 0.02 m in the
length, which is measured as 15.25 m?
2. To what percent accuracy must the radius of a ball bearing be measured so the
calculated volume will be correct to 0.3%?7

Exercise

1. Find the differential of each of the following functions:
(a) y=322+6
(b) y=(z*—1)*
2. Find Ay and dy for each of the following:
(a) y="T2> +4z; x =4, Az = 0.2
(b) y=(1-32)° z=1, Az =0.01

3. Estimate the volume of rubber in a rubber-covered ball 25.0 cm in diameter if
the rubber is 0.125 cm thick. (The volume of a sphere is given by V = 3mr® )

4. If the measurement of the radius of a circular patio has an error of 0.50 cm,
what is the error in the calculated area if the radius is measured as 1.35 m?
(Area of a circle is given by A = 7r? )

Reading:

Sec. 27-6

Problems:

Ex. 6 (p. 801) # 29-39 (odd)
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Answers
1. (a) dy =6xdx
(b) dy = 8z(2* — 1)3dx
2. (a) Ay=12.28,dy =12
(b) Ay = —2.473, dy = —24
3. 245 cm?
4. 0.042 m?

Unit 4: Applications of the Derivative
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Review Problems: Applications of the Derivative

. Write the equations, in general form, of the tangent and normal to the curve

y? = 4z at the point (1,2).

. Use Newton’s method to find the positive root of the equation

2> +3r—-8=0

to 2 decimal places.

. Find the maximum, minimum and inflection points of the curve

y=1a>—3x+4

. Using curve sketching techniques demonstrated in class, sketch the graph of the

function y = — + 2? (give critical points in decimal form to 3 significant digits).
x

. The height h (in kilometres) to which a balloon rises in ¢ minutes is given by the

formula
10¢

/4000 + ¢2

At what rate is the balloon rising at the end of 30 minutes?

. The horizontal and vertical displacements of a projectile moving in the earth’s

gravitational field are given by

t?
T = Vgl yzvoyt—7
where vy, and vy, are the initial horizontal and vertical velocities respectively,
and g = 9.80 m/s?. A cannonball is fired with an initial velocity of 175 m/s at
an angle of 45.0° to the horizontal. Find its horizontal and vertical velocities
after 10.0 s.

. A ladder 10.0 m long is leaning against a vertical wall. If the foot of the ladder

is being pulled away from the wall at 0.500 m/s, how fast is the top of the ladder
moving down the wall when the foot of the ladder is 2.00 m from the wall?

. A rope attached to a boat is being pulled in by a winch at a rate of 2.50 m/s. If

the boat is 5.00 m below the level of the winch, how fast is the boat approaching
the wharf when 13.0 m of rope are out?

. Sand is emptied down a chute at the rate of 3.00 m3/s, forming a conical pile

whose height is always twice the radius. At what rate is the radius changing
when the height is 2.00 m? (Volume of a cone is given by V = %m“?h.)

26
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10. A window at the front of a house with a cathedral ceil-
ing is to be designed in the shape of a rectangle with a
semicircle on top, as shown. If the perimeter of the win-

h
dow is to be 8.00 m, find the dimensions, w and h, of the L

window that will maximize the area of the window.

— W —Pp

11. An open rectangular box is to be formed by cutting a square from each corner of
a square piece of cardboard 24.0 cm on each side, as shown. After the squares
are removed the sides are folded up to form the box.

(a) How large a square must be removed from each . =
corner in order for the box to have the maximum ¥ kN
volume? 2400m
(b) What will the maximum volume of the box be? s s
e—— 240cm —

12. A coat of paint 0.050 mm thick is to be applied to the outside surface of a
spherical storage tank with a radius of 20.0 m. Use differentials to estimate the
number of litres of paint that will be needed.

(Volume of a sphere is given by V = 3773.)

13. A disk-shaped solar cell has a measured radius of 120.0 mm. The error in
measurement of the radius of the cell is 0.050 mm. Use differentials to estimate:

(a) The absolute error in the area of the top surface of the solar cell

(b) The relative (percent) error in the area of the top surface of the solar cell
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Answers:

1. Tangent: © —y+ 1 =0; Normal:x +y —3 =10
2. x=1.51
3. Maximum: (—1,6); Minimum: (1,2); Inflection point: (0,4)

4. Minimum: (1.14, 3.93); Inflection Point: (—1.44,0)

Plot:

Min

5. 0.117 km/min

6. v, =124 m/s, v, = 25.7 m/s
7. 0.102 m/s

8. 2.71 m/s

9. 0.477 m/s

10 w=224m, h=112m

11. (a) 4.00 cm
(b) 1020 cm?

12. 251 L

13. (a) 38 mm?
(b) 0.083%
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Additional Review Problems

e Chapter 28 Review (P. 826) # 1-16 (all except # 12)

e Chapter 29 Review (p. 854) # 3, 5, 6, 7, 11, 13, 19, 21

Even-Numbered Answers

e Chapter 28:

2. (0,0)

4. Maximum: (-1, 5.33); Minimum: (3, -5.33); Inflection Point: (1,0)
6. (2,3)

8. Graph

10. Decreasing

14. z-intercept of tangent: (1.29, 0), x-intercept of normal: (818, 0)
16. Graph

e Chapter 29:

6. v =10 units/s, a = 8 units/s?
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Lecture Notes

Formulas

Newton’s Method

It T T ()
n

Equations of Motion

Differentials
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Systematic Procedure for Critical Points

Stationary Points (Maxima, Minima):

1. Write down the original function y, the first derivative 3/, and the second
derivative y”.

2. Set the first derivative, 3/, to zero and solve for x. This gives the
x-coordinates of any stationary points.

3. Substitute these x-values into the original function, y, to find the
y-coordinates of the stationary points.

4. Perform the second derivative test on each stationary point by
substituting its x-value into the second derivative, y”.
e If yy/ > 0, the point is a minimum point.
e If 3y’ < 0, the point is a maximum point.
e If ¢/ =0, the test is inconclusive.
5. If 3" turns out to be zero, use one of the following tests to determine if the
stationary point is a maximum, a minimum or neither:
First derivative test: The first derivative 1/ is:
e negative to the left and positive to the right of a minimum point.
e positive to the left and negative to the right of a maximum point.

e the same sign on both sides of a stationary point that is neither a
maximum nor a minimum.

Ordinate test: the y-value is:
e greater on both sides of a minimum point.
e less on both sides of a maximum point.
e greater on one side and less on the other side of a stationary point
that is neither a maximum nor a minimum.

6. Write down the coordinates of each stationary point, and state whether
each one is a maximum, a minimum or neither.
Inflection Points:
1. To find inflection points, set the second derivative equal to zero and solve
for x.

2. Check to see whether the second derivative changes sign on either side of
the point(s).

3. Substitute the x-coordinates of any inflection points into the original
function to find the y-coordinates of the inflection points.

4. Write down the x and y-coordinates of the inflection points.
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Steps for Curve Sketching

10.

. Check to see if the equation represents a standard type of curve (e.g. power

function, exponential function, etc.).

. Determine the x and y-intercepts (if possible).

. Determine whether the curve is symmetric about the x-axis, y-axis or origin.
. Determine the domain and (if possible) the range of the function.

. Determine whether there are any vertical or horizontal asymptotes.

. Determine what happens to the function for large (positive and negative)

x-values.

. Locate any stationary points, and determine if they are maximum or minimum

points, or neither.

. Determine for what z-values the function is increasing or decreasing.

. Locate any inflection points.

Determine for what = values the curve is concave upward or concave downward.

32
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Steps for Related Rate Problems

1. Locate the given rate and express it as a derivative with respect to time.
2. Determine the unknown rate and express it as a derivative with respect to time.

3. Find an equation linking the variables in the known and unknown rates. If there
are other variables in the equation, eliminate them using other known
relationships.

4. Take the derivative of the equation with respect to time.

5. Subsitute known values and solve for the unknown rate.

Steps for Optimization Problems

1. Locate the quantity (for purpose of these steps call it y) to be maximized (or
minimized).

2. Locate the quantity (call it ) which is to be varied to maximize (or minimize) y.

3. Write an equation linking y and z. If the equation contains any other variables,
eliminate them using a second equation. A graph of y versus x would show
maximum (or minimum) points.

4. Take the derivative %.

5. Set the derivative equal to zero and solve for z. Find the corresponding y values
for these stationary points.

6. Check the stationary points found to see if they are relative maxima (or
minima) using either the second derivative test, the first derivative test or the
ordinate test.

7. Find the absolute maximum (or absolute minimum) by comparing y values of
the relative maxima (or relative minima) found. Also check the y values at the
endpoints of the physically allowed values of = since the largest (or smallest) y
value may also lie there.
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