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Chapter 1: Equations and Functions

1



2 1.1 Equations

1.1 Equations

Definition: An equation is two mathematical expressions joined with an equal sign.

Example 1-1

x3 + 2x = 1 + x+ cosx

When an equation involves a variable (like x) equality will usually hold for only certain values of the
variable. These particular values are called the solutions or roots1 of the equation. Solving an
equation is the act of finding the solutions of it.

The above equation is difficult to solve. The following equation is easy:

5x+ 2 = 0 .

Just isolate the variable by doing the necessary inverse operations to both sides:

5x+ 2 = 0

5x = −2 subtracted 2 from both sides

x = −2

5
divided both sides by 5

The above equation is an example of a linear equation ax+ b = 0 because it contains only powers

of the variable (i.e. xn) with the highest power being one (x1 = x, x0 = 1). Here a and b are constants
– the symbols represent numbers that just have not been specified. In the above example they would

be a = 5 and b = 2. The solution to the general linear equation in one variable would be x = − b
a

.

A quadratic equation involves a highest power of the variable of two, for example:

x2 = 5x− 6

The latter we rearrange by appropriate subtraction to be in the standard form ax2 + bx+ c = 0 to
be:

x2 − 5x+ 6 = 0

So a = 1, b = −5, and c = 6. A product is made up of two or more factors multiplied together. One
method of solving for x involves factoring the left hand side.

(x− 3)(x− 2) = 0

(Check by multiplication of the factors that the left hand side is the same as before!) This simplifies
the problem since the only way a product can equal zero is if one of the factors is zero:

(A)(B)(C) · · · = 0 ⇐⇒ A = 0 or B = 0 or C = 0 or . . .

Factoring thus reduces the above problem to solving two simpler linear equations:

x− 3 = 0 or x− 2 = 0

x = 3 or x = 2

1Some reserve the term root for solutions to an equation of the form f(x) = 0 where f is a function of x. All
equations can be rearranged into this form. The roots, in this situation, are also called the zeros of the function f(x)
meaning they are the values of x which make the function equal zero.
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So the solutions of the original quadratic equation are 2 and 3. Factoring can help solve complicated
equations, just make sure you rearrange things so that zero is on one side of your equation first!

A second method to solve the quadratic equation for x involves the technique called completing the
square. It can be done once and for all in terms of the constants a, b, c to get the quadratic formula:

ax2 + bx+ c = 0⇒ x =
−b±

√
b2 − 4ac

2a
Memorize me!

Here, in general, using the + will give one solution and the − will give the other.

Example 1-2

Solve the following equations:

1. x2 − 5x+ 6 = 0 (Here use the quadratic formula.)

2. x2 − 4x+ 4 = 0 (A quadratic with leading coefficient of a = 1)

3. 2x2 − 4x+ 5 = 0 (A quadratic with leading coefficient a 6= 1)

4. x3 − 3x2 − 4x = 0 (A cubic equation)

5. x3 − 2x2 − 3x+ 6 = 0 (Factor by grouping.)

6. 6x2 − 13x− 5 = 0

7. x5 − 4x3 = 0 (A quintic equation)

8. x4 + 2x3 − x− 2 = 0 (A quartic equation)

9. x3 + 2x2 − 1 = 0

10. x3 + 27 = 0

The previous problems made use of some of the following factor identities:

(Ax+Ay + . . .) = A(x+ y + . . .) Pulling out a common factor of A

x2 + (A+B)x+AB = (x+A)(x+B) Factoring a quadratic with leading coefficient of 1

ACx2 + (AD +BC)x+BD = (Ax+B)(Cx+D) Factoring a general quadratic

x2 − y2 = (x+ y)(x− y) Difference of Squares

x2 + 2xy + y2 = (x+ y)2

x2 − 2xy + y2 = (x− y)2

x3 + y3 = (x+ y)(x2 − xy + y2) Sum of Cubes

x3 − y3 = (x− y)(x2 + xy + y2) Difference of Cubes

Here x, y, A, and B could represent variables or constants or even a combination. A could be the
factor (x−2) or y could be the number 2 or x could be 2z so that x2 = (2z)2 = 4z2. Thus these factor
identities have more application than at first glance.

You can verify the identities by multiplying the right side of each one out to get the left. Try it! Note
that (x+ y)2 just means (x+ y)(x+ y), etc.
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We call these factor equations identities rather than just equations because they are true for not just
a particular value of the variables but for all values of them. Identities can be used to manipulate
expressions found in equations like we did above since they replace one expression with another which
is completely equivalent.

Answers:
Page 171

Exercise 1-1

1-10: Solve the given equations.

1. x2 − 6x+ 9 = 0

2. 2x2 − 5x− 3 = 0

3. 4x2 + 3x+ 1 = 0

4. x3 − 2x− 4 = 0

5. x3 − 4x2 − 4x+ 16 = 0

6. x3 + 4x− 5 = 0

7. 2x4 − 3x2 = 0

8. x4 − 3x2 + 2 = 0

9. 3x5 − 2x3 + 3x2 − 2 = 0

10. 2x5 + 5x4 − 3x2 = 0

Additional techniques beyond identities that are useful for finding solutions to polynomial equations
are the rational roots test coupled with polynomial division to reduce the order of the polynomial.
The latter division, which involves only linear factors, can be done efficiently through a process called
synthetic division.

While we have focussed on factoring to find solutions, it is sometimes useful to reverse this process
and use solutions to equations to factor expressions. As an example, to factor the quadratic expression
ax2 + bx+ c, one can use the quadratic formula to find the two solutions x+ and x− to the quadratic
equation ax2 + bx+ c = 0. The original quadratic polynomial then factors as

ax2 + bx+ c = a(x− x+)(x− x−)

where the coefficient a on the right hand side is required to make the x2 terms equal. As a specific
example, the polynomial 6x2 − 13x− 5 when equated to zero has solutions x+ = 5/2 and x− = −1/3
by the quadratic formula. It follows that 6x2 − 13x − 5 = 6(x − 5/2)[x − (−1/3)] which simplifies to
(2x− 5)(3x+ 1) .2

2This factoring procedure is particularly useful if the roots generated by the quadratic equation are irrational.
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1.2 Functions

1.2.1 Sets

To define a function we first define the notion of a set.3

Definition: A set S is a collection of distinct objects called elements.

In mathematics sets will often contain numbers and a finite set can be represented by listing its elements
between braces, { and }. For example, the set S = {2, 3, 7} is the set containing the three integers
2, 3, and 7. Order does not matter in a set, so {2, 3, 7} = {3, 2, 7}. In an infinite set we cannot list
all the elements so other notation is required. For the set S of all real numbers between two values,
say −2 and 5 (but not including the endpoints −2 and 5), one can use interval notation and write
S = (−2, 5) . If we wish to include one or both endpoints we use square brackets [ and ] rather than
parentheses. So S = (−2, 5 ] includes all the numbers strictly between −2 and 5 as well as 5 itself. If
we wish to indicate all the numbers that are greater than a number (say 3) we can use the infinity
symbol∞ and write the interval as (3,∞). An interval containing both endpoints, like [−1, 1], is called
closed. An interval containing neither endpoint, like (2, 3) or (−∞, 2), is called open. For the set of
all real numbers one uses the special symbol R. Clearly R = (−∞,∞) . A set containing no elements,
S = { }, is called the empty set and is denoted ∅ .

Given two sets S and T we can combine the elements from both sets to create a new set called the
union of the sets, S ∪ T , which is the set of all the elements in S or T (including the elements in
both). So (1, 3) ∪ (2, 6) = (1, 6) . The intersection of the sets, S ∩ T , is the smaller set of elements
that are found in both S and T . So (1, 3) ∩ (2, 6) = (2, 3) . The difference of two sets, S − T , is a
new set that contains all elements in S except for those also found in T . So, for example, to describe
the set of all real numbers except for the number −2 one could write either (−∞,−2) ∪ (−2,∞) or,
more simply, R − {−2} . Finally one can also use set notation with braces to represent infinite sets.
The set {x ∈ R | 3 < x ≤ 5} can be read, “The set of all x in (∈) the real numbers such that ( | ) x is
between 3 and 5, including 5. In interval notation this is just the set (3, 5 ]. As a further example, the
intersection of two sets could be written S ∩ T = {x |x ∈ S and x ∈ T} .

1.2.2 Definition of a Function

Definition: A function f is a rule (correspondence) that assigns to each element x in a set D exactly
one element y = f(x) in a set R .

Think of a function as a machine that takes an input value x and turns it into an output value y or
f(x).

Example 1-3

Let f(x) = 2x2 − 3x+ 5. Find f(3) and f(−2).

• The variable x is called the independent variable.

• The variable y is called the dependent variable.

3This naive definition of a set as a collection results in logical inconsistencies that need to be resolved using a more
rigorous axiomatic approach. However, for the sets encountered in this text, both of finite and infinite size, the given
definition will be sufficient.
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• The set D is called the domain of the function.

• The set R of all assumed y-values is called the range of the function.

1.2.3 Representing Functions

There are different ways to represent a function:

Formulaic: The output values are given by explicit formula:

y = x3 + 2x+ 3 f(z) = z3 − 5z − 10

Graphical (Visual): The function value for x is found by looking at the y-value of the point (x, y)
on a line in the Cartesian plane:

2

4

y

−3 −2 −1 1 x

(−2, 4)

Here f(−2) = 4 .

Tabular (Numerical): The y-values are listed for each x-value. For example define a function by:

x y
-1 2
2 0
3 5

Note for a function like y = x2 it is impossible to tabulate all the possible values of y if x
is allowed to be any real number. However it is often convenient to tabulate some values for
graphing purposes, etc. For a function defined over only a finite domain (as in our example
D = {−1, 2, 3}) a table is perfectly fine, however.

Symbolic: The function is referred to by a symbol.

y = f(x) z = H(α)

Note here that we are using functional notation. When we write f(x) we do not mean multipli-
cation; rather f(x) represents the value y the function f assigns to a particular value of x .4

4Also note the use of the Greek letter alpha (α) for the variable in the second example. A few useful Greek letters
worth knowing are the first five of its alphabet, namely alpha: α, beta: β, gamma: γ, delta: δ, and epsilon: ε . Also
theta: θ, phi: φ, and rho: ρ are also commonly used.
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1.2.4 Vertical Line Test

Vertical line test: A curve lying in the x-y coordinate plane is the graph of a function if and only if
every vertical line intersects the curve at no more than one point.

y

x

A function

y

x

Not a function

The curve at right represents the relation (y− 1)2 = x− 1. Unlike functions, relations do not require
a single y-value for each x-value.

1.2.5 Determining the Domain of a Function

When a function is given as a formula with no domain specified the domain D is the set of all real
numbers for which the formula makes sense and defines a real number. The impossibility of dividing
by zero or taking an even root of a negative number will, for example, restrict the domain of certain
functions. Deciding when an expression involving a variable is negative (< 0) or not involves working
with inequalities. This is reviewed in Appendix A .

Example 1-4

Find the domain of each of the following functions:

1. f(x) = x4 + x

2. f(x) =
2

x2 − 9

3. f(x) =
√
x− 2

4. h(t) = 3
√
t+ 4

5. f(x) =
√
x2 − 3x

6. g(t) =

√
t+ 5

t− 2
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1.2.6 Intercepts

Definition: A y-value at which a graph touches the y-axis is called a y-intercept. An x-value at
which a graph touches the x-axis is called an x-intercept.

Note that the graph does not necessarily cross the axis at an intercept (though it typically will). The
following graph has x-intercepts of x = 1 and x = 3 and a y-intercept of y = 2 .

x

y

31

2

The function f itself can be used to find where its graph intersects an axis. A y-intercept for the graph
of function y = f(x) is found by evaluating f(0), while x-intercepts are found by solving f(x) = 0
for x. For a relation one sets x = 0 and solves for y to find any y-intercepts and sets y = 0 and solves
for x to find any x-intercepts.

Conversely, one can solve the equation f(x) = 0 approximately by graphing the function y = f(x) by
plotting points and then observing the approximate x-intercepts. These are the solutions to f(x) = 0
since at the x-intercepts one has y = 0. Such approximate solutions can then be further refined using
numerical techniques, such as Newton’s method, that require an initial guess for a solution as a
starting point to the algorithm.

1.2.7 Symmetry of Functions

Definition: A function f(x) is said to be

even if f(−x) = f(x), and

odd if f(−x) = −f(x) .

Example 1-5

Find the intercepts of the following functions and determine if the functions are even or odd.

1. f(x) = x4 − 5x2

2. f(x) = x3 − 3x2 + 4

3. f(x) =
x2 + 5

x3 + x
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Note:

• An even function is symmetric with respect to the y-axis. (Every point (x, y) on the graph has
a corresponding point (−x, y) that also sits on the graph.)

• An odd function is symmetric with respect to the origin. (Every point (x, y) on the graph has a
corresponding point (−x,−y) that also sits on the graph.)

The graphs of the even and odd functions from the last example illustrate these symmetries.

y

x

(x, y)(−x, y)

f(x) = x4 − 5x2

y

x

(x, y)

(−x,−y)

f(x) = x2+5
x3+x

Recognizing the symmetry of a function is therefore useful when graphing, since the graph of a sym-
metric function to the left of the origin (x < 0) is completely determined by the graph to the right of
it (x > 0). As such one only needs to calculate points on half the domain when graphing symmetric
functions.

Symmetry is also helpful in solving equations. If one desires solutions to f(x) = 0 and one observes
that f(x) is symmetric (either even or odd), then if x0 is a solution to the equation then −x0 must also
be a solution. This follows since, for a symmetric function f(−x0) = ±f(x0) = ±0 = 0. Graphically
this can be seen for the function f(x) = x4 − 5x2 above, where the function crosses the x-axis at

√
5

and −
√

5. These are both solutions to x4−5x2 = 0 since the graph y = f(x) crosses the x-axis (y = 0)
at those values.
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1.2.8 Reflection and Translation

It is possible to construct new functions from an original function f(x) whose graphs are reflections
about the y-axis or x-axis or horizontal or vertical translations of the original graph. Consider the
function f(x) defined by the following graph:

y

x

y = f(x)

Evaluating the following transformations g(x) of f(x) at a few points x confirms the following results.
(Alternatively pick an actual function, work out the transformation and plot the result.)

y = g(x) = f(−x):

y

x

y = f(−x)

Reflection about the y-axis.

y = g(x) = f(x− a):

y

x

a

y = f(x− a)

For a > 0 translation is to the right, while a < 0
results in translation to the left.

y = g(x) = −f(x):

y

x

y = −f(x)

Reflection about the x-axis.

y = g(x) = f(x) + a:

y

x

a

y = f(x) + a

For a > 0 translation is upward, while a < 0
results in translation downward.
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Answers:
Page 171

Exercise 1-2

1-16: Find the domain and the x- and y-intercepts (if there are any) of the given functions.

1. f(x) = x3

2. h(x) =
√
x− 6

3. f(x) = x2 + 4x+ 4

4. g(x) = x4 + 4x3 − 5x2

5. f(x) =
1

x− 1

6. h(x) =
1

x2 + 4x+ 4

7. p(x) =
√

4− x2

8. f(x) = 3x2 + 5x+ 2

9. g(x) = x3 + 3x− 4

10. h(x) =
x+ 5

x+ 7

11. f(x) =
10

2x2 − 5x− 3

12. g(x) =
√

4− x

13. p(x) =
√
x2 − 10

14. h(x) =

√
x+ 6

2x− 3

15. f(x) =

√
x2 − 10

x2 + 10

16. f(x) =
1√
x+ 2

− 1

x

17-32: Determine whether each of the given functions is even, odd or neither.

17. f(x) = 3x2

18. g(x) = 2x3

19. h(x) = 3x2 + 2x3

20. f(t) = −6t3

21. g(u) = u3 − u2

22. f(x) = x3 + x5

23. f(x) =
√

4− x2

24. h(x) =
x2 + 1√
4− x2

25. f(x) = 5x2 + 3

26. g(t) = 4t3 + t

27. h(z) = z5 + 1

28. f(t) =
√
t2 + 5

29. g(x) =
x

x4 + 3

30. h(u) =
3 + u2

u+ 1

31. p(x) =
x5

x3 + x

32. u(s) =

√
s6 + 4

s10 + 7
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33. Here is a graph of a function f :

x

y

(a) Sketch the graph of −f(x).

(b) Sketch the graph of f(−x).

(c) Sketch the graph of f(x+ 1).

(d) Sketch the graph of f(x) + 1.

(e) Is f even, odd, or neither?

1.2.9 Types of Functions

Polynomials: f(x) = a0 + a1x+ a2x
2 + a3x

3 + . . .+ anx
n where n is a positive integer. The ai are

constants called the coefficients of the polynomial while n is its degree (assuming an 6= 0).

Example 1-6

The following are polynomials:

y = 2x+ 9 (A straight line)

f(x) = x4 − 5x2 (See our previous plot.)

f(x) = x10 + 5x7 + 3x4 + 10

Note D = R for a polynomial.

Rational Functions: f(x) =
P (x)

Q(x)
where P (x) and Q(x) are polynomials.

Example 1-7

The following are rational functions.

f(x) =
x2 + 5

x3 + x
(See our previous plot.)

g(x) =
x+ 2

x2 − 1
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The domain for a rational function is all the real numbers except for those where the denominator
vanishes. In set notation symbols D = {x ∈ R | Q(x) 6= 0}. (Read ∈ as “in” and the vertical
bar ( | ) as “such that”.)

Example 1-8

Factoring the denominator polynomials we see the domains of our rational functions are:

Domain for f(x) : x3 + x = x(x2 + 1) ⇒ D = R− {0}

Domain for g(x) : x2 − 1 = (x+ 1)(x− 1) ⇒ D = R− {−1, 1}

Power Functions: f(x) = xr where r is any real number.

Example 1-9

The following are power functions.

f(x) = x4 g(x) = x
1
2 =
√
x h(x) = x−1 =

1

x
y

x

f(x) = x4

y

x

g(x) = x
1
2

y

x

h(x) = x−1

Absolute Value Function: f(x) = |x| =
{

x if x ≥ 0
−x if x < 0

(A piecewise-defined function.)

y

x

f(x) = |x|

Note that
√
x2 6= x! To see this, notice that for x = −2 we have

√
(−2)2 =

√
4 = 2, since square

root returns a single value (as required for a function) defined to be the positive square root. So

here
√

(−2)2 = 2 = −(−2) and, in general, for x < 0 one has
√
x2 = −x. For x ≥ 0 on has√

x2 = x. The two possibilities can be conveniently combined using the absolute value function

to get the correct result for all real values of x, namely
√
x2 = |x| . Thus the equation x2 = 4 is

in fact equivalent to |x| =
√

4 = 2 which, in turn is equivalent to x = 2 or −x = 2 (so x = −2).5

5The underlying problem here is that the function f(x) = x2 is not invertible. The square root function is only
the inverse of f(x) = x2 restricted to the domain [0,∞) (which is invertible). One cannot, therefore, take the square
root of x2 when solving an equation and get x without typically missing a solution. A related problem occurs when one
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Exponential Functions: f(x) = bx where b is a positive real number (the base).

Example 1-10

The following are exponential functions.

f(x) = 2x

g(x) = ex where e = 2.71828 . . .

y

x

f(x) = 2x

1

Logarithmic Functions: f(x) = logb x where b is a positive real number.

Example 1-11

The following are logarithmic functions.

f(x) = log2 x

g(x) = loge x = ln x

y

x

g(x) = ln x

1

squares both sides of an equation to remove a radical. In this case the new equation may have solutions that are not
solutions to the original equation, so-called extraneous roots, and one must check all solutions to the new equation back
in the original equation to avoid them. As an example, the equation

√
2x+ 3 = x, upon squaring both sides gives the

equation 2x+ 3 = x2 which has solutions x = −1 or x = 3. Only x = 3 is a solution to the original equation; x = −1 is
extraneous. In general, care must be taken when taking even roots and powers. However, odd root and power functions
(which are invertible on their natural domains) behave as expected, n

√
xn = x and ( n

√
x)n = x for n odd.
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Trigonometric Functions:

Example 1-12

The following are trigonometric functions.

f(x) = sinx y = cscx

Trigonometric functions of angles that are less than 90◦ (acute angles) are defined to be functions
of similar right triangles. Two geometrical figures are similar if they have the same shape, but
potentially different sizes:

a
c

b B

A
C

Similarity of regular polygons means that the corresponding angles in the figures are equal. The
lengths of corresponding sides, however, must only form a proportion. For the similar triangles
above one has

a

A
=

b

B
=

c

C
.

The first equality implies
a

b
=
A

B
,

and, in general, the ratio of the lengths of two sides in a figure will be the same for the corre-
sponding sides of all similar figures.

The basic trigonometric functions are defined as ratios of the sides of a right triangle for a given
angle x. Since these ratios are the same for two similar triangles these functions are well defined.

adjacent

opposite

x

hypoteneuse

sinx =
opp

hyp
cscx =

1

sinx
=
hyp

opp

cosx =
adj

hyp
secx =

1

cosx
=
hyp

adj

tanx =
opp

adj
=

sinx

cosx
cotx =

1

tanx
=
adj

opp
=

cosx

sinx

For angles larger than 90◦ the trigonometric functions are defined by considering Cartesian
Coordinates and choosing a point (x, y) on the terminal ray of the angle and defining the func-
tions identically as in the acute case with the replacements adjacent → x, opposite → y, and
hypotenuse → r where r =

√
x2 + y2. So for instance, now using θ (pronounced theta) for the

angle, tan θ = y
x , etc. Since x, and y can be negative the trigonometric functions themselves can

also now be negative. The situation is summarized in the next diagram.
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Quadrant III

Tangent Positive

Quadrant IV

Cosine Positive

Quadrant II

Sine Positive

Quadrant I

All Positive

(x, y)

x

r
y

y

x

θ

The sign of the reciprocal trigonometric functions (cosecant, secant, and cotangent) follow the
same behaviour as sine, cosine, and tangent respectively.

Radian Measure

We can measure angles either in degrees (1 circle=360◦) or in terms of the length of arc on a
circle that an angle subtends. To do the latter the angle, in radians, is just the ratio of the length

of the arc s over the radius r, so θ =
s

r
.

x

s
θ

r

y

By taking the ratio of s over r we are guaranteed that our angle calculation will be independent
of the choice of the size of the circle we use since two different circles will generate two sectors
of a circle (i.e. pieces of pie) that are similar figures.

If we draw the angle in a unit circle so r = 1 then the angle is exactly the arc length measured.
Since for a unit circle the circumference is 2πr = 2π(1) = 2π the angle of an entire circle is 1
circle=2π radians. It therefore follows that

π rad = 180◦

Unlike degrees, radians are a fake unit and we don’t need to write it. (Both s and r have the
same length units so their ratio is dimensionless.) An angle reported with no units is assumed
to be in radians. When we later work with angles the formulae we derive will assume angles are
given in radians.6

6Remember when doing any trigonometric evaluation formulae in calculus usually require angles to be in radians
not degrees. Most calculators have a setting to put the calculator in “radian mode” so that all angles arguments (and
angles returned from inverse trig functions like arcsin(x) ) are assumed to be in radians.
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Using the previous relation some basic angle measurements in radians are:

30◦ =
π

6
45◦ =

π

4
60◦ =

π

3
90◦ =

π

2
180◦ = π 360◦ = 2π

Evaluating trigonometric functions of some of the common angles can be done using the 30◦ −
60◦ − 90◦ and 45◦ − 45◦ − 90◦ triangles:7

1

√
2

√
3

30◦

60◦ 45◦

45◦

1 1

2

So, for instance, sin 60◦ = opp
hyp =

√
3

2 . Or, in radians, sin π
3 =

√
3

2 . For angles of 0 or 90◦ = π
2

one should know cos(0) = 1, sin 0 = 0, cos π2 = 0, and sin π
2 = 1. These results may be found by

considering the unit circle points (x, y) = (1, 0) and (x, y) = (0, 1) on the terminal ray of angles
0 and π/2 respectively on the previous quadrant diagram (so r = 1, cos θ = x, sin θ = y).

Trigonometric functions evaluated in quadrants other than the first may be found by evaluating
the trigonometric function of the reference angle (the positive acute angle made between the
terminal ray of the angle in question and the x-axis) multiplied by the appropriate sign of the
trigonometric function for the given quadrant. So, for instance, to evaluate cos(5π/6) we note
the angle θ = 5π/6 = 150◦ is in the second quadrant and has reference angle

θ′ = π − 5π/6 = π/6 = 30◦ ,

as shown on the next diagram.

Quadrant II

Sine Positive

y

x

θ = 5π/6
θ′ = π/6

Since cosine is negative in the second quadrant we have

cos(5π/6) = − cos(π/6) = −
√

3

2
.

7Note that the side lengths of the 30◦−60◦−90◦ triangle arise from bisecting one 60◦ angle of an equilateral triangle
of side length 2. For the 45◦−45◦−90◦ triangle the legs of the isosceles triangle are chosen to be length 1. The remaining
sides in both cases, of length

√
3 and

√
2 respectively, can then be determined by the Pythagorean Theorem.
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Answers:
Page 172

Exercise 1-3

1-8: Find the exact values of the following trigonometric functions. Check your results on
your calculator.

1. sin(π/3)

2. cos(135◦)

3. sin(5π/6)

4. cos(3π/2)

5. csc(7π/4)

6. cot(210◦)

7. sec(π)

8. tan(13π/4)

Graphs of the basic trig functions with x in radians are as follows:

−1

1

y

x

f(x) = sin x

π
2 π 3π

2
2π−π2−π− 3π

2
−2π

−1

1

y

x

f(x) = cos x

π
2 π 3π

2
2π−π2−π− 3π

2
−2π

−2

−1

1

2

y

x

f(x) = tan x

π
2 π 3π

2
2π−π2−π− 3π

2
−2π

The graphs of the reciprocal trig functions (csc, sec, cot) will blow up at any value where the
corresponding trig function (sin, cos, tan) is zero.
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Trigonometric Identities

Just like we saw algebraic identities, there are basic trigonometric identities which are true for all
angles:8

Pythagorean Relations:

sin2θ + cos2θ = 1 tan2θ + 1 = sec2θ 1 + cot2θ = csc2θ

Symmetry Relations:

sin(−θ) = − sin(θ) cos(−θ) = cos(θ)

Periodicity:

sin(θ + 2π) = sin θ cos(θ + 2π) = cos θ

Addition and Subtraction Formulae:

sin(x+ y) = sinx cos y + cosx sin y

sin(x− y) = sinx cos y − cosx sin y

cos(x+ y) = cosx cos y − sinx sin y

cos(x− y) = cosx cos y + sinx sin y

Double Angle Formulae:

sin 2x = 2 sinx cosx

cos 2x = cos2x− sin2x = 2 cos2x− 1 = 1− 2 sin2x

From the last it follows that:

cos2x =
1 + cos 2x

2
sin2x =

1− cos 2x

2

Note in the above identities that the notation sin2x means (sinx)2, etc. That is we take the sine of x
first and then square that result.

From these identities other identities can be proven.

Example 1-13

Prove the following identities:

1. 1 + sin 2θ = (sin θ + cos θ)2
2.

sinx

cotx
= secx− cosx 3. tan2 θ sin2 θ = tan2 θ − sin2 θ

8Note that the various trigonometric identities on this page follow readily from the three basic identities which should
be memorized:

1. sin2x+ cos2x = 1

2. sin(x± y) = sinx cos y ± cosx sin y

3. cos(x± y) = cosx cos y ∓ sinx sin y

Dividing 1. by cos2x gives the Pythagorean identity involving tangent and secant, while dividing 1. by sin2x gives the
identity involving cotangent and cosecant. The Symmetry Relations can be obtained by setting x = 0 in the subtraction
versions of 2. and 3. The Periodicity results follow from setting y = 2π in 2. and 3. and evaluating the trigonometric
functions at 2π. The Double Angle Formulae follow by setting y = x in the addition versions of 2. and 3. The final
identities then follow from the Double Angle Formulae as mentioned above.
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Ultimately the usefulness of trigonometric identities, as with the factoring identities, is to simplify
expressions, often to aid in the solution of trigonometric equations. See the review in Appendix B on
solving trigonometric equations.

1.2.10 Composition of Functions

Given two functions f and g the composite function, denoted f ◦ g, is defined by:

f ◦ g(x) = f(g(x))

i.e. We replace the x in f(x) by g(x).

The new function f ◦ g is defined wherever both g(x) and f(g(x)) are defined.

Example 1-14

Let f(x) = x2 + x − 5, g(x) = 2x + 1 . Find the composite functions f ◦ g and g ◦ f and their
domains.

Example 1-15

Let h(z) =
z2 − 2z

z3 + 8
, g(z) = z + 1 . Find h ◦ g and its domain.

Recognizing function composition can help solve equations. For instance, to solve

y10 + y5 − 6 = 0

we notice that the expression on the left hand side is a function composition as we can rewrite the
equation

(y5)2 + (y5)− 6 = 0 .

If we let x = y5 we can first solve x2 + x − 6 = 0 to get x = −3 or x = 2 and then next solve
y5 = −3 or y5 = 2 to get the final solutions y = 5

√
−3 = − 5

√
3 or y = 5

√
2 . In general, solving an

equation where the expression involving the variables is a composition of two functions requires solving
the equation involving the outer function first followed by solving the inner function equalling those
solutions found.9

9This procedure further generalizes when one has a composition of more than two functions, like f(g(h(z))) = 0 .
Simply solve f(x) = 0 to get solutions xi. Next solve g(y) = xi to get solutions yi. Then solve h(z) = yi to get solutions
zi. These are the solutions to the original equation.
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Answers:
Page 173

Exercise 1-4

1. Suppose that f(x) =
1

x+ 2
. Determine:

(a) f(x+ 2) (b) f(f(x))

2-5: Find the composite functions f ◦ g and g ◦ f and their domains for the given functions.

2. f(x) = 2x3, g(x) =
√
x2 + 3.

3. f(x) = 3x2 + 6x+ 4, g(x) = 3x− 2

4. f(z) =
√
z2 + 5, g(z) =

z

z + 1

5. f(x) =
2x+ 5

x− 4
, g(x) = x2 + 3

6. Find two functions f(x) and g(x) such that f(g(x)) =
√
x2 + 1− 3.

7. Use function composition to solve the equation
(
x2 − 5

)2
+ 7x2 − 23 = 0. (Hint: Note the

equation can be rewritten as
(
x2 − 5

)2
+ 7

(
x2 − 5

)
+ 12 = 0.)
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Answers:
Page 173

Chapter 1 Review Exercises

1-5: Solve the given equations.

1. 2x2 + 3x− 2 = 0

2. x2 + x− 20 = 0

3. x3 + 2x2 − x− 2 = 0

4. x4 − 5x2 + 4 = 0

5. x5 − 4x3 − x2 + 4 = 0

6-9: Find the domain and the x- and y-intercepts of the given functions.

6. h(x) =
2x− 3

5x+ 4

7. f(x) =
√

2x2 − 8

8. g(x) =

√
2x+ 1

x+ 5

9. p(x) =

√
x+ 8

x− 3

10-13: Determine whether each of the given functions is even, odd or neither.

10. f(x) =
x4 + 3

x2 + 1

11. g(t) = t2/3

12. h(z) = z
√
z2 + 1

13. g(x) =
x3

x6 + 5
− x

14-16: Find the composite functions f ◦ g and g ◦ f and their domains.

14. f(x) = x3 + 6, g(x) = x2/3

15. f(t) =
2t+ 5

t− 4
, g(t) = t2 + 3

16. f(x) =
√
x− 1, g(x) =

x+ 5

x+ 3
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2.1 Tangent to a Curve

Most are familiar with a tangent line to a circle at a point P . It is the line that just clips the circle at
only that point:

P

We can similarly imagine a tangent line to an arbitrary curve at a point P :

P
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If we place the curve in a Cartesian Coordinate system we can represent it by the function y = f(x) = x3

and the point of interest by its coordinates P (1, 1):

−1

1

2

y

−1 1 x

y = x3

P (1, 1)

We can define our tangent line as follows:

Definition: A tangent line to a curve y = f(x) at a point P (x0, y0) is a (straight) line that touches
the curve at P which, if extended, does not cross the curve at that point.

Now that we have coordinates we can ask what the tangent line at P (1, 1) actually is, by which we
mean “What is the tangent line written as a function?”. The equation of any line in two dimensions
can be written:

y = mx+ b ⇐ Slope-Intercept Form

where the constant m = ∆y
∆x is the slope which is a measure of the direction the line is going, while

b is the y-intercept which indicates where to start the line on the y-axis. Another convenient recipe
for determining the equation of the line is to use the slope m as before but also an arbitrary point
(x0, y0) on the line as the starting point (no longer (0, b)):

y = m(x− x0) + y0 ⇐ Point-Slope Form

In our case we know our tangent line goes through the point (1, 1) so this is (x0, y0). It remains to
find the slope, call it mt, for our tangent at P . We can approximate the slope of the tangent by
taking a point Q near P and finding the slope of the line (the secant) between Q and P . If we let the
x-coordinate of Q be x, a value close to 1, then the point Q is Q(x, f(x)) = Q(x, x3).
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−1

1

2

y

−1 1 x

y = x3

P (1, 1)

Q(x, x3)
∆y

∆x

x

Then the slope of the secant line PQ is:

mPQ =
∆y

∆x
=

1− x3

1− x
Since knowing the x-coordinate completely determines Q and consequently the slope, we see that mPQ

is really just a function of x:

m(x) =
1− x3

1− x
So, for instance, at the point Q(1/2, 1/8) which corresponds to x = 1/2 the slope of the secant would
be:

mPQ = m

(
1

2

)
=

1−
(

1
2

)3
1− 1

2

=
7
8
1
2

=
7

4

Now we don’t want the slope of any of these secants through P , we want the slope of the tangent mt,
so let’s just plug in x = 1 to get it:

mt = m(1) =
1− 13

1− 1
=

0

0

The slope function m(x) is not defined at x = 1! However if we take x values slightly smaller than 1
(so Q gets very close to P from the left as in the diagram) or x values slightly larger than 1 (so Q gets
very close to P from the right) we have the following answers for the slope of those secants:

Approaching 1 From the Left

x mPQ = m(x)

0.5 1.75
0.9 2.71
0.99 2.9701
0.999 2.997001
0.9999 2.99970001

Approaching 1 From the Right

x mPQ = m(x)

1.5 4.75
1.1 3.31
1.01 3.0301
1.001 3.003001
1.0001 3.00030001
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The results show that the closer x is to 1 (equivalently point Q is to P ), the closer mPQ is to 3. This
suggests the slope of the tangent line at P should be mt = 3. However, as shown above, this is not
the value of the function m(x) at x = 1 as that value is undefined. We need a new concept. We say
the slope of the tangent line is the limit of the slopes of the secant lines and we write

mt = lim
Q→P

mPQ .

Written in terms of the function m(x),

mt = lim
x→1

m(x) = lim
x→1

1− x3

1− x
= 3 .

We can now use the point-slope formula with (x0, y0) = (1, 1) and mt = 3 to get the equation of the
tangent line at P to be

y = 3(x− 1) + 1 .

Multiplying this out gives the slope-intercept form of the tangent, namely

y = 3x− 2 .

Answers:
Page 174

Exercise 2-1

1. Consider the curve described by the function y = x3 + x2 − 2x+ 3 .

(a) Show that the points (−1, 5) and (0, 3) lie on the curve.

(b) Determine the slope of the secant line passing through the points (0, 3) and (−1, 5).

(c) Let Q be the arbitrary point (x, x3 + x2 − 2x+ 3) on the curve. Find the slope of the
secant line passing through Q and (−1, 5).

(d) Use your answer in (c) to determine the slope of the tangent line to the curve at the
point (−1, 5).
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2.2 Limit of a Function

In the last section we came up with a function m(x) and considered its limiting behaviour as x → 1.
In general we can explore limits numerically for an arbitrary function:

Example 2-1

Investigate the limiting behaviour of the function f(x) = x2 + 1 for x near 2:

Approaching 2 From the Left

x f(x)

1.5 3.25
1.9 4.61
1.99 4.9601
1.999 4.996001
1.9995 4.99800025
1.9999 4.99960001

Approaching 2 From the Right

x f(x)

2.5 7.25
2.1 5.41
2.01 5.0401
2.001 5.004001
2.0005 5.00200025
2.0001 5.00040001

From the numerical tables we can see that when x gets closer to 2 (on either side) f(x) gets closer
to 5. Therefore the limit of f(x) = x2 + 1 as x approaches 2 is 5:

lim
x→2

(x2 + 1) = 5

The previous discussion leads to the following non-rigorous definition of a limit.

Definition: The limit of f(x) as x approaches a is L if we can make the values of f(x) as close as
we like to L by taking x-values sufficiently close but not equal to a. In symbols we write:

lim
x→a

f(x) = L .

If such a limit exists then the values of f(x) get closer and closer to the number L as x gets closer and
closer to the number a (from either side of a) but x 6= a.

Note that because the limit at x = a only depends upon the values of the function f(x) around a the
function at a may not even be defined (i.e. a may not be in the domain of the function). This was the
case of our secant slope function m(x) at x = 1. If the function is defined it might equal the limit. In
the above numerical example we found the limit was L = 5 at a = 2 and in fact f(2) = 22 + 1 = 5 also
equals 5. However we could also tweak the above function to have a different value from the limit at
x = 2 by defining it to be

g(x) =

{
x2 + 1 if x 6= 2

6 if x = 2
.
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Graphically the two functions look as follows:

1

2

3

4

5

6

7

y

−2 −1 0 1 2 x

y = f(x)

1

2

3

4

5

6

7

y

−2 −1 0 1 2 x

y = g(x)

The function values at x = 2 differ since f(2) = 5 6= 6 = g(2), but the limit as x→ 2 for both functions
is L = 5,

lim
x→2

f(x) = lim
x→2

g(x) = 5 ,

since the limits only depends upon what the functions are doing near the x-value a = 2 which is
identical for both functions.
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2.3 Rigorous Definition of the Limit

For our course the previous definition of the limit which is intuitive is adequate. However if we really
want to prove basic theorems of limits (such as the ones we shall state without proof in the next
section) we need a more precise definition. The epsilon-delta (ε-δ) definition of the limit is such a
definition.

Definition: Let function f be defined on an open interval containing the number a, except possibly
at a itself. Then

lim
x→a

f(x) = L (the limit of f(x) as x approaches a is L)

if for every number ε > 0 there exists a number δ > 0 such that

|f(x)− L| < ε whenever 0 < |x− a| < δ .

The following diagram illustrates that for the given ε (here 0.5) a value of δ can be found (here 0.15)
which would be sufficient to meet the criterion for the function shown. To prove that lim

x→2
f(x) = 3 we

would need to show such a delta could be found for every epsilon.

0

1

2

3

4

y

0 1 2 x

L=

L+ ε

L− ε

y = f(x)

a
a− δ a+ δ
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2.4 Limit Rules

We wish to have rules for limits so we do not have to evaluate them all numerically. The following
graphs of some basic functions illustrate what will be our first limit rules.

3

y

2 x

f(x) = 3

lim
x→2

3 = 3

Constant Function

⇒ lim
x→a

c = c

2

y

2 x

f(x) = x

lim
x→2

x = 2

Direct Variation Function

⇒ lim
x→a

x = a

4

y

2 x

f(x) = x2

lim
x→2

x2 = 22

Power Function (n = 2)

⇒ lim
x→a

xn = an
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The validity of the former limit results, whose truth is made plausible by the graphs, can be verified
with proofs using the rigorous definition of the limit.1 These and other results involving limits are
summarized in the following theorem.

Theorem 2-1: Let c be a constant and suppose the limits lim
x→a

f(x) and lim
x→a

g(x) exist. Then the

following limit rules hold:

1. lim
x→a

c = c

2. lim
x→a

x = a

3. lim
x→a

xn = an

4. lim
x→a

n
√
x = n

√
a (Here n is a positive integer. If n is even, then we require a > 0.)

5. lim
x→a

[f(x)± g(x)] = lim
x→a

f(x)± lim
x→a

g(x)

6. lim
x→a

[cf(x)] = c lim
x→a

f(x)

7. lim
x→a

[f(x)g(x)] =
[

lim
x→a

f(x)
] [

lim
x→a

g(x)
]

8. lim
x→a

f(x)

g(x)
=

lim
x→a

f(x)

lim
x→a

g(x)
(Here we require lim

x→a
g(x) 6= 0)

9. lim
x→a

[f(x)]n =
[

lim
x→a

f(x)
]n

10. lim
x→a

n
√
f(x) = n

√
lim
x→a

f(x) (n a positive integer. If n is even, then lim
x→a

f(x) > 0 is required.)

1Note that a numerical evaluation of a limit is not rigorous as one is only checking the behaviour of a handful of
x-values around a where limits require analysis of all the values around a.
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Example 2-2

Evaluate the following limits. Consider which rules are being used at each step of the evaluation.

1. lim
x→2

(
3x3 − 2x2 + 3x+ 1

)
2. lim

x→4

√
x2 − 4

3. lim
x→−1

x2 + 1

x+ 4

4. lim
x→1

x2 − 1

x2 + 1

5. lim
x→2

x− 2

x2 − 2x

6. lim
h→0

(1 + h)2 − 1

h

7. lim
s→0

√
s2 + 9− 3

s2

8. lim
x→−2

x2 − x− 6

x+ 2

9. lim
x→1

1
x − 1

x− 1

10. lim
x→−1

x3 + x2 − x− 1

x3 + 2x2 + 2x+ 1

11. lim
t→−5

t2 + 5t√
t2 − 16− 3

12. lim
x→1

1− x3

1− x
⇐

Recall this was our
secant slope limit:
lim
x→1

m(x)

The previous examples illustrate the general strategy for evaluating the limit lim
x→a

f(x) :

• Evaluate f(a) and see if it results in the indeterminate form 0
0

. If it is not, the limit rules
can often be used to show the limit really is just f(a).

• If the result is an indeterminate form, try the following:

– Simplify

– Expand

– Factor

– Rationalize using the conjugate

• Of course one can also check a result numerically by evaluating the function at values close to a.

Remember: 0
0 is not an answer for a limit. The indeterminate form indicates more work must be done

to find the limit or else to show it does not exist.

The following example illustrates evaluating limits involving symbolic functions and constants.

Example 2-3

If lim
x→a

f(x) = 2, lim
x→a

g(x) = −3, and lim
x→a

h(x) = 3 then find:

1. lim
x→a

6f(x)− 4[g(x)]2

g(x)− 4f(x)

2. lim
x→a

[f(x) + h(x)]3

3. lim
x→a

f(x)

g(x) + h(x)
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Answers:
Page 174

Exercise 2-2

1-15: Evaluate the following limits.

1. lim
x→3

x2 + 4

x+ 2

2. lim
x→−2

x2 + 4x+ 4

x+ 2

3. lim
x→0

2−
√

4− x
x

4. lim
x→3
|x− 3|

5. lim
x→−2

x2 − 3x− 10

x2 − 4

6. lim
x→3

1
x −

1
3

x− 3

7. lim
t→1

t−
√
t√

t− 1

8. lim
x→1

x3 − 2x+ 1

x− 1

9. lim
t→4

√
t− 2

t− 4

10. lim
y→3

2−
√
y2 − 5

y2 − y − 6

11. lim
x→−4

(x+ 1)
2 − 9

x+ 4

12. lim
u→−5

1
u + 1

5

u+ 5

13. lim
t→2

t2 + t− 6
2
t − 1

14. lim
x→4

x3 − 4x2 − 4x+ 16

x− 4

15. lim
t→1

t3 + 4t− 5

t3 − 1
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2.5 Trigonometric Limits

Theorem 2-2: The following trigonometric limits can be shown to exist:

lim
x→0

sinx

x
= 1 lim

x→0

sin ax

x
= a lim

x→0

1− cosx

x
= 0

lim
x→a

sinx = sin a lim
x→a

cosx = cos a

Useful examples of the last two limits are:

lim
x→0

sinx = 0 lim
x→0

cosx = 1

lim
x→π/2

sinx = 1 lim
x→π/2

cosx = 0

lim
x→π

sinx = 0 lim
x→π

cosx = −1

The trigonometric limits which involve a ratio may be verified numerically using a calculator (note
the angles must be in radians), the remainder may be verified by consideration of the graphs of the
functions.2

These basic results, our previous limit rules, and trigonometric identities may be used to find more
complicated trigonometric limits.

Example 2-4

Evaluate the following trigonometric limits:

1. lim
x→0

sin2x

x

2. lim
x→0

x

1− cosx

3. lim
x→0

1− cosx

x2

4. lim
x→0

secx tanx

x

5. lim
x→0

sin2x

x
4
3

6. lim
x→0

sin 4x

3x

7. lim
t→0

2t sin t− 5t2

t2

8. lim
x→π

2

cos2 x

1 + cos 2x

2Note that the limits lim
x→a

sinx = sin a and lim
x→a

cosx = cos a reflect, as will be seen in Section 2.9, the continuity of

sine and cosine.
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Answers:
Page 174

Exercise 2-3

1-11: Evaluate the trigonometric limits.

1. lim
θ→0

θ

sin θ

2. lim
θ→0

θ cot θ

3. lim
x→0

1− cosx

sinx

4. lim
θ→0

7θ

sin 5θ

5. lim
θ→0

7θ

cos 5θ

6. lim
x→0

sinx

x cosx

7. lim
x→π

cosx

x

8. lim
θ→π

4

tan θ

θ

9. lim
t→π

2

sin t− 1

cos t

10. lim
x→0

tanx

x

11. lim
θ→π

cos θ + 1

sin2 θ
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2.6 The Squeeze Theorem

Theorem 2-3: If g(x) ≤ f(x) ≤ h(x) for all x in an interval containing a (with the potential exception
of x = a) and

lim
x→a

g(x) = lim
x→a

h(x) = L

then
lim
x→a

f(x) = L

This is known as the squeeze theorem.

Example 2-5

If 3x ≤ f(x) ≤ x3 + 2 for 0 ≤ x ≤ 2, evaluate lim
x→1

f(x) .

The following graph shows g(x) = 3x and h(x) = x3 + 2 and a hypothetical f(x) which meets the
criterion of being between the two functions.

3

y

1 x

f(x)

g(x) = 3x

h(x) = x3 + 2
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2.7 One-sided Limits

We can define weaker limit criteria if we restrict ourselves to approaching a from either the left or the
right.3

Definition: The left-hand limit of f(x) as x approaches a is L if we can make the values of f(x) as
close as we like to L by taking x-values sufficiently close to a with x less than a. In symbols we
write:

lim
x→a−

f(x) = L .

Definition: The right-hand limit of f(x) as x approaches a is L if we can make the values of f(x)
as close as we like to L by taking x-values sufficiently close to a with x greater than a. In symbols
we write:

lim
x→a+

f(x) = L .

The following graph of a hypothetical function f(x) shows the behaviour of the one-sided limits at
a = 2:

1

3

y

2 x

f(x)

lim
x→2−

f(x) = 3

lim
x→2+

f(x) = 1

The following important theorem relates the (two-sided) limit at a to the one-sided limits at that
number.

Theorem 2-4: lim
x→a

f(x) = L if and only if lim
x→a−

f(x) = L and lim
x→a+

f(x) = L

Note that the above theorem requires that for a limit to exist both the left and right-handed limits
must exist and be equal. It follows that in our above graph lim

x→2
f(x) does not exist as the one-sided

limits, while they exist, are not equal.

3More rigorous ε-δ definitions of the left-hand and right-hand limits can easily be formulated by replacing the
condition 0 < |x− a| < δ with a− δ < x < a and a < x < a+ δ respectively in the (two-sided) limit definition. One now
also only requires that f be defined to the left or right of a respectively.
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Example 2-6

−1

1

2

3

4

y

−5 −4 −3 −2 −1 1 2 3 4 5 6 7 x

f(x)

1. For the above function evaluate lim
x→a−

f(x), lim
x→a+

f(x), lim
x→a

f(x), and f(a) at a = 0, a = 3,

and a = 5 .

2. Find lim
x→2−

f(x) and lim
x→2+

f(x) if f(x) =

{
x3 if x ≤ 2

4− 2x if x > 2

Does lim
x→2

exist?

3. Suppose f(x) =

{
9
x2 if x ≤ −3

4 + x if x > −3
.

Find lim
x→−3−

f(x), lim
x→−3+

f(x), and lim
x→−3

f(x), if they exist.

4. Show that lim
x→7

|x− 7|
x− 7

does not exist.
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Answers:
Page 174

Exercise 2-4

1. Find the one-sided limits of f at the values x = 0, x = 2 and x = 4.

−1 0 1 2 3 4 5 x

1

2

3

4

5

y

2. Find the one-sided and two-sided limits of f at the values x = 0, x = 2 and x = 4.

1 2 3 4 5 x

−2

−1

1

2

y

3. Suppose f(x) =

{
4

x+4 if x < 2

x2 + 1 if x ≥ 2
.

Find lim
x→2−

f(x), lim
x→2+

f(x), and lim
x→2

f(x), if they exist.

4. Suppose f(x) =

{
x2 + 2cx if x ≤ −1
x+ 5c if x > −1

.

Find all values for the constant c that make the two-sided limit exist at x = −1 .
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2.8 Limits Involving Infinity

Sometimes when limits do not exist at x = a they may yet show a systematic trend to larger positive or
larger negative values as one approaches a. The following definitions give the notation used to indicate
such trends.4

Definition: Suppose function f(x) is defined to the left and the right of the x-value a (though perhaps
not at a itself). Then

lim
x→a

f(x) =∞

if the values of f(x) can be made arbitrarily large positively by taking x sufficiently close (but
not equal) to a.

The following graph illustrates a function tending to positive infinity.

y

x−1

lim
x→−1

f(x) =∞

Definition: Suppose function f(x) is defined to the left and the right of the x-value a (though perhaps
not at a itself). Then

lim
x→a

f(x) = −∞

if the values of f(x) can be made arbitrarily large negatively by taking x sufficiently close (but
not equal) to a.

The following graph illustrates a function tending to negative infinity.

y

x
2

lim
x→2

f(x) = −∞

4The first definition (involving +∞) can be made rigorous by demanding that for any M > 0 there exist δ > 0 such
that f(x) > M whenever 0 < |x−a| < δ. For the second definition (involving −∞) we demand that for any N < 0 there
exist δ > 0 such that f(x) < N whenever 0 < |x− a| < δ.
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Definition: We analogously define the following one-sided limits involving infinity:

lim
x→a+

f(x) =∞ lim
x→a−

f(x) =∞ lim
x→a+

f(x) = −∞ lim
x→a−

f(x) = −∞

These various cases are illustrated below.

y

xa

lim
x→a+

f(x) =∞

y

xa

lim
x→a−

f(x) =∞

lim
x→a+

f(x) = −∞

y

x
a

lim
x→a−

f(x) = −∞
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Note the following function does not approach infinity as x approaches zero:

f(x) = A

∣∣∣∣ 1x cos
(a
x

)∣∣∣∣
where a and A are positive constants. Its graph for a choice of these constants is shown below.

y

−3 −2 −1 1 2 x

If an arbitrary number is picked (say 3) there must be some interval around 0 (not including 0 itself)
for which all the values will be above 3. The fact that the function returns to zero (despite getting
very large at other points) makes it impossible to have the limit approach infinity.

Note that if f(x) approaches infinity at x = a the limit does not exist at x = a. A limit L must be
a number. The notation ∞ indicates a trend in the function f(x) toward a large magnitude at a, but
it is not a number.

As we have seen, for limits lim
x→a

f(x) where f(x) is made up of algebraic manipulations of common

functions like polynomials, trigonometric functions, etc., it is of value to see what the function f(a)
is to help determine the behaviour of the limit at the value. If f(a) is actually defined our limit laws
can often be used to show that the limit is exactly that value. If the result is indeterminate, 0/0,
more work must be done to evaluate the limit. If f(a) is p/0 where p is a non-zero constant this
is an indication the function tends to infinity at that value. Consideration of values of f(x) for x a
little to the left and right of a determine whether the function approaches ∞ or −∞ and whether the
behaviour is one-sided or not. Looking at the sign and magnitude of factors in the expression to the
right and left of a can also help resolve infinite trends at a.

Example 2-7

Evaluate the following:

1. lim
x→2

1− x2

x2 − 4x+ 4
2. lim

t→1

t3 + 5t

t2 + 3t− 4
3. lim

x→0

x2 + 9x

x3



44 2.8 Limits Involving Infinity

Definition: If the limit as x→ a of f(x) tends to ±∞ from either the left or right or both, i.e.

lim
x→a

f(x) =∞ lim
x→a−

f(x) =∞ lim
x→a+

f(x) =∞

lim
x→a

f(x) = −∞ lim
x→a−

f(x) = −∞ lim
x→a+

f(x) = −∞ ,

then the line x = a is a vertical asymptote of the curve y = f(x).

In the previous diagrams involving f(x) approaching infinity on pages 41 and 42 the dashed lines are
the vertical asymptotes once they are extended indefinitely upwards and downwards.

Notes:

• Because any of the above conditions in the definition can occur it is sufficient to show the limit is
of the form p/0 with p 6= 0 to determine the location of a vertical asymptote, without evaluating
the particular way the function is approaching infinity at a.

• When reporting a vertical asymptote, one writes x = a because this is the relation representing
a vertical line. (The point (a, y) clearly satisfies the relation for any real value y .)

Example 2-8

Find the vertical asymptotes of the following functions:

1. y =
x2 + 4

x2 − 1

2. y =
x+ 2

x2 + 5x+ 6

3. y =
x2 + 2x− 8

(x− 2)2
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Answers:
Page 175

Exercise 2-5

1-4: Determine the following limits. For any limit that does not exist, identify if it has an infinite
trend (∞ or −∞).

1. lim
x→2+

5x+ 4

2x− 4

2. lim
x→3−

x2 + 2x

x2 − 5x+ 6

3. lim
x→5

x2 − 4x− 5

x2 − 3x− 10

4. lim
x→0

secx

x2

5-12: Find the vertical asymptotes of the following functions.

5. f(x) =
3x+ 3

2x− 4

6. f(x) = x3 + 5x+ 2

7. g(t) =

√
t2 + 3

t− 2

8. f(x) =
x2 − 2x+ 1

2x2 − 2x− 12

9. f(x) =
cosx

x

10. y =
5x2 − 3x+ 1

x2 − 16

11. f(x) =
x3 + 1

x3 + x2

12. F (x) =
x√

4x2 + 1
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2.9 Continuity

The idea of continuity of a function f(x) at a value x = a is intuitively seen in a graph of a function:

y

x1 2 3

f(x)

y

x−1 1 2 3

g(x)

It is obvious from the graph of the function that the function f is continuous at x = 2 while g would
not be (as it has a hole). Similarly g is not continuous at x = 1 due to the break in the function.
However g would be continuous at a location like x = −1.

A rigorous definition of continuity that will match our intuitive one requires the concept of the limit
of f at a and links it to the value of the function evaluated at a.

Definition: A function f(x) is continuous at x = a if

lim
x→a

f(x) = f(a) .

If f(x) is not continuous at a then f is discontinuous at a or f(x) has a discontinuity at a.

The above definition of continuity at a requires three things:

1. f(a) is defined. (I.e. a is in the domain of f .)

2. lim
x→a

f(x) exists.

3. lim
x→a

f(x) = f(a).

With a rigorous definition of continuity we can evaluate the continuity of a function at any point.

Example 2-9

Determine whether the following functions are continuous at the given values of x.

1. f(x) = x+ 2 at x = 1 ?

2. f(x) =
x2 − 4

x− 2
at x = 2 ?

3. f(x) =

{
(x− 1)3 if x < 0
(x+ 1)3 if x ≥ 0

at x = 0 ?

4. f(x) =

 2x+ 1 if x < 1
2 if x = 1

x+ 2 if x > 1
at x = 1 ?

5. f(x) =


sinx

x
if x 6= 0

2 if x = 0

at x = 0 ?

6. f(x) =
cosx

x
at x = 0 ?



Limits 47

Clearly not all discontinuities have the same behaviour. A removable discontinuity at a is one for
which, if the function f were redefined appropriately at a, would result in a continuous function at
that value. These are functions whose graphs essentially have a hole in them. Questions 2, 4, and 5 in
Example 2-9 are of this kind. Jump discontinuities, as the name suggests, occur when the function
shifts from one limiting value on the left to another on the right as in Question 3. Finally an infinite
discontinuity occurs when there is a vertical asymptote at x = a such as in Question 6 . The latter
two discontinuities cannot be removed by redefinition of the function at a.

Definition: At x = a a function f(x) is continuous from the left if

lim
x→a−

f(x) = f(a) ,

and continuous from the right if

lim
x→a+

f(x) = f(a) .

Definition: A function f(x) is continuous on an interval if it is continuous at every value in the
interval. (For an endpoint of a closed interval if the domain of the function does not extend
beyond the endpoint one-sided continuity is sufficient.)

Example 2-10

In our previous graphically defined functions on page 46 we see that f(x) is continuous on [1, 3] and
any subinterval of that interval while g(x) would be continuous on (−∞, 1], [−1, 1], (1, 2), (2, 3],
but not (0, 2.5) nor [1, 2].

Continuity of a function on its domain can also be analyzed directly from the definition.

Example 2-11

1. Is f(x) =

{
x− 1 if x < 3
5− x if x ≥ 3

continuous?

2. Find the value(s) of a so that the given function is continuous for all x.

f(x) =

{
a2x2 + 3x− 4 if x ≤ −1
x+ 2a if x > −1
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To avoid resorting to the definition of continuity the following theorem can be used:

Theorem 2-5: The following results involving continuity are valid:

1. A constant function f(x) = c is continuous for all x.

2. For n a positive integer, f(x) = xn is continuous for all x.

3. A polynomial is continuous for all x.

4. A rational function is continuous on its domain, that is it is wherever it is defined
(wherever the denominator does not vanish).

5. For n a positive even integer, n
√
x is continuous for all x with x ≥ 0 .

6. For n a positive odd integer, n
√
x is continuous everywhere.

7. A trigonometric function is continuous on its domain (i.e. wherever it is defined.)

8. Suppose f and g are continuous at x = a and let c be any constant, then the following
functions are continuous at a:

f + g f − g cf fg
f

g
(provided g(a) 6= 0).

9. If g is continuous at a and f is continuous at g(a) then f ◦g(x) = f(g(x)) is continuous at a.

Example 2-12

Determine where the following functions are continuous:

1. f(x) = x2 − 2x+ 1

2. f(x) =
x

x2 − x− 6

3. f(x) =
3
√
x2 − 4

4. f(x) =
4
√
x2 − 4

5. f(x) =

√
x

x− 2

We note that by the continuity theorems, most of the functions we would typically write down, exclud-
ing piecewise-defined functions, are continuous on their domains. Thus at any point a in the domain
D of such a function, continuity there implies lim

x→a
f(x) = f(a). In other words, the limit can be found

by evaluating the function at x = a, a result we previously concluded for such functions using our limit
theorems.
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2.10 The Intermediate Value Theorem

Theorem 2-6: Let f(x) be continuous on a closed interval [a, b]. If M is a value strictly between
f(a) and f(b), then there exists a number c in (a, b) such that f(c) = M . This is known as the
Intermediate Value Theorem.

The theorem is depicted below for a hypothetical function:

1

2

y

1 2 3 4 x

f(a)

f(b)

M

a bc

(c, f(c))

A continuous curve on the closed interval [a, b] is like a string joining the points (a, f(a)) and (b, f(b)).
So if we choose the value M between f(a) and f(b) and extend a horizontal line across, it must, due
to the continuity, cross the curve at least once. Where it does is the point (c, f(c)), which, since
f(c) = M , yields the desired value c. Notice that there could be more than one value c that works. In
the above graph if our value M had been 0.5 then the horizontal line would have crossed the curve 3
times, yielding three suitable values of c with f(c) = 0.5 .

Example 2-13

1. If f(x) = x3 + x2 + x, prove there is a value c in (−1, 2) with f(c) = 3 .

2. If g(x) = x5 − 2x3 + x2 + 2 show there is a number c such that g(c) = −1 .

A corollary of the Intermediate Value Theorem is that if f(x) is a continuous function on [a, b] with
f(a) and f(b) of different sign (so f(a) < 0 and f(b) > 0 or f(a) > 0 and f(b) < 0) then there exists
at least one c in (a, b) with f(c) = 0.

Now any equation (such as 2x+ sinx = 0) can always be written in the form

f(x) = 0

by taking all the terms to the left-hand side and defining that to be f(x). If we find two values a and
b such that the function at those values has different sign, then, assuming the function is continuous
on [a, b], the intermediate value theorem corollary implies a c exists in the interval with f(c) = 0. But
then this c is precisely a root (solution) of the equation we wished to solve.
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Example 2-14

Show that x4 − x3 − 1 = 0 has a root between x = −1 and x = 0.

Once an interval containing a root is found one may evaluate the function at the midpoint of the
interval. Its sign will differ from one of the endpoints and so one can narrow the interval which
contains the root. Repeating the process is the basis of the bisection method, a numerical method
for finding solutions to arbitrary equations.

Answers:
Page 175

Exercise 2-6

1. Define precisely what is meant by the statement “f is continuous at x = a”.

2-7: Use the continuity definition to determine if the function is continuous at the given value.
If the function is discontinuous there, decide whether it is a removable, jump, or infinite
discontinuity.

2. f(x) = x3 + 5x+ 1, at x = 2

3. g(t) =
t+ 1

t2 + 4
, at t = −1

4. h(y) =
y2 + 4y + 4

y + 2
, at y = −2

5. p(s) =
√
s− 4, at s = 2

6. f(x) =

{
x2 + 1, if x ≤ 1
x+1
x−1 , if x > 1

, at x = 1

7. g(t) =

{
2t+ 3, if t ≤ 2
t2−5t+6
t−2 , if t > 2

, at t = 2

8. Let c be a constant real number and f be the function

f(x) =

{ √
−x+ 1 if x < 0
x2 + c2 if x ≥ 0

(a) Explain why, for c = −2, the function f is discontinuous at x = 0.

(b) Determine all real numbers c for which f is continuous at x = 0.

9. Where is the function f(x) =
x2 + 3x+ 2

x2 − 1
continuous?

10. Using the Intermediate Value Theorem, show there is a real number c strictly between 1 and
3 such that c3 + 2c2 = 10.

11. Show that the equation x2 + cosx− 2 = 0 has a solution in the interval (0, 2).
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Answers:
Page 176

Chapter 2 Review Exercises

1-5: Evaluate the limits.

1. lim
x→3

2x2 − 5x− 3

x2 + x− 12

2. lim
t→4

√
t− 2

t2 − 2t− 8

3. lim
x→−1

x3 + x2 + 2x+ 2

x2 − 2x− 3

4. lim
t→−2

√
10 + 3t− 2

3t2 + 4t− 4

5. lim
t→2

8
t − 4

3t2 − 4t− 4

6-9: Evaluate the trigonometric limits.

6. lim
x→0

sin(4x)

sin(5x)

7. lim
θ→0

sin(3θ)

tan(4θ)

8. lim
t→π

2 sin2 t

1 + cos t

9. lim
x→0

cos(3x) + cos(4x)− 2

x

10-12: Determine whether the functions are continuous at the given value.

10. f(x) =
x+ 3√
x2 + 5

at x = −1

11. h(t) =
t2 + 2t− 1

t− 3
at t = 3

12. g(x) =

{
3x2 − 1, if x ≤ 2
x2+x−6
x−2 , if x > 2

at x = 2



52



Chapter 3: Differentiation

53



54 3.1 Motivating the Derivative

3.1 Motivating the Definition of the Derivative

3.1.1 Tangents

When motivating the definition of the limit we were trying to solve the equation for the tangent to a
point on a curve. We now write the definition of the tangent of the curve at a point directly in terms
of the limit where, from the following diagram, it follows that ∆y = f(x)− f(a) and ∆x = x− a:

y

x

f(x)

f(a)

y = f(x)

Q(x, f(x))

P (a, f(a))
∆y

∆x

a x

Definition: Let P (a, f(a)) be a point on the curve y = f(x). The tangent line to the curve at P is
the line through P having slope

m = lim
x→a

f(x)− f(a)

x− a
,

assuming the limit exists.

Example 3-1

Find the equation of the tangent line to the curve y = 2
x at P (2, 1) .

Another equivalent (and convenient) limit for the tangent slope can be found by considering the limit
as ∆x goes to 0. If, for brevity, we call ∆x by h we have

h = x− a ,

so that x = a+ h. The original limit for the tangent slope becomes m = lim
h→0

f(a+ h)− f(a)

h
.

Example 3-2

1. Find the equation of the tangent line to the curve y = x3 at P (1, 1) using this second expression
for the tangent slope.

2. Find the slope of the tangent line to the curve y = x3 at the arbitrary point P (a, a3)
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3.1.2 Velocity in One Spatial Dimension

In the tangent problem the independent variable was a spatial one, x. Another useful independent
variable is time t. If an object is moving along a straight line then its position in space is completely
determined by its displacement s from some point along the line, the origin. If the object is moving
in time its position at any given time t will be given by a position function s = f(t).

An example of such motion is a ball thrown directly upwards which, in the absence of wind, will move
in a vertical line where s is the height above ground:

f (t)

s

A negative displacement would indicate the ball is positioned below ground surface.

Definition: The average velocity over the time interval from t = a to t = a+ h is

average velocity =
displacement

time
=
f(a+ h)− f(a)

h
.

Letting the time interval approach zero (h→ 0) we arrive at the following definition:

Definition: The (instantaneous) velocity v(a) at time t = a is:

v(a) = lim
h→0

f(a+ h)− f(a)

h
.

Note velocity is a signed quantity. A positive sign in our ball example indicates the ball is moving
upwards and a negative sign indicates it would be falling.

Example 3-3

The displacement s (in metres) of a particle moving in a straight line is given by s = t2 − 4t + 5
where t is measured in seconds.

1. Find the average velocity over the interval [3, 4].

2. Find the (instantaneous) velocity at t = 4 seconds.
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3.1.3 Other Rates of Change

The previous examples involving relative change in coordinate variables or in position with respect to
time can be further generalized. If x changes from x1 to x2 then the change in x, called the increment
in x, is denoted by:

∆x = x2 − x1 .

If y = f(x) then the corresponding increment in y is

∆y = f(x2)− f(x1) .

As with the the specific example of velocity, the average rate of change of y with respect to x is

∆y

∆x
=
f(x2)− f(x1)

x2 − x1
=
f(x1 + ∆x)− f(x1)

∆x

Taking the limit as x2 → x1, or equivalently ∆x → 0, one defines the rate of change of y with
respect to x as

lim
∆x→0

∆y

∆x
= lim

∆x→0

f(x1 + ∆x)− f(x1)

∆x
= lim
x2→x1

f(x2)− f(x1)

x2 − x1

This general definition shows there are many rates of change depending upon the choice of independent
and dependent variable, velocity being only one.

Example 3-4

Recalling that the area of a circle in terms of its radius is A = πr2,

1. Find the average rate of change of the area of a circle with respect to its radius r as r changes
from 2 cm to 2.5 cm.

2. Find the instantaneous rate of change of the area with respect to the radius of the circle when
r = 2 cm.

Example 3-5

A spherical cell has approximate volume of V = 4
3πr

3 which increases as it grows. Find the rate
of change of volume with respect to radius r when r = 5 µm . (Note 1 micrometre (µm) equals
1× 10−6m.)
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Answers:
Page 176

Exercise 3-1

1. Consider the function f(x) = x3 + x+ 2.

(a) Find the slope of the secant line through points (2, 12) and (1, 4) on the graph of f .

(b) From your graph, estimate the slope of the tangent line to the curve at the point (2, 12).
Next, numerically estimate the tangent slope by calculating the secant slope between
the point (2, 12) and a point with x value near 2.

(c) What is the equation of the tangent line at (2, 12)? (Use your estimate from (b) for the
slope.)

2. After t seconds, a toy car moving along a straight track has position s(t) measured from a
fixed point of reference given by s(t) = t3 + 2t2 + 1 cm.

(a) How far is the car initially from the reference point?

(b) How far from the reference point is the car after 2 seconds?

(c) What is the average velocity of the car during its first 2 seconds of motion?

(d) By calculator, estimate the instantaneous velocity of the car at time t = 2 by computing
the average velocities over small time intervals near t = 2.

3. One mole of an ideal gas at a fixed temperature of 273 K has a volume V that is inversely
proportional to the pressure P (Boyle’s Law) given by

V =
22.4

P
,

where V is in litres (L) and P is in atmospheres (atm).

(a) What is the average rate of change of V with respect to P as pressure varies from 1 atm
to 3 atm?

(b) Use a calculator to estimate the instantaneous rate of change in the volume when the
pressure is 3 atm by computing the average rates of change over small intervals lying
to the left and right of P = 3 atm.



58 3.2 The Derivative

3.2 The Derivative

The preceding examples of the tangent slope, velocity, and more generally (instantaneous) rate of
change illustrate the value in defining (and calculating) the following limit of a function f(x).

Definition: The derivative of a function f at a value x = a, denoted by f ′(a), is

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

provided the limit exists.

As we saw when formulating the tangent to a curve an equivalent definition is

f ′(a) = lim
x→a

f(x)− f(a)

x− a

Example 3-6

Find the derivative of f(x) =
1

x2 + 1
at x = a.

Note the following regarding f ′(a), the derivative of f(x) at x = a,

1. f ′(a), is the slope of the tangent line at P (a, f(a)) .

It follows that if f ′(a) exists then the equation of the tangent line to the curve y = f(x) at the
point P (a, f(a)) is

y = f ′(a)(x− a) + f(a) .

2. If s = f(t) is the position function of an object moving in one spatial dimension, then f ′(a) is
the velocity of an object at time t = a .

3. f ′(a) is, in general, the rate of change of y = f(x) with respect to x when x = a .

If we replace a by x in the definition of the derivative, we have the following.

Definition: For a given function f(x) the derivative function is given by

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

In words, associated with any function f there is a corresponding function f ′(x) whose evaluation gives
the value of the derivative of the function f at any value x of interest.

Example 3-7

If f(x) =
√
x− 1, find f ′(x).



Differentiation 59

The following diagram illustrates the meaning of the derivative function f ′(x) graphically. Each x
value has an associated point P through which there is a unique tangent with the slope given by f ′(x).

y

x
−1.7

m = f ′(−1.7) = −0.13

−0.5

m = f ′(−0.5) = 0.88

0.7

m = f ′(0.7) = 0.76

1.6

m = f ′(1.6) = −0.03

f(x)

Derivative Notation

In addition to f ′ the derivative of the function y = f(x) may be denoted by

y′
dy

dx

df

dx

d

dx
f Df Dxf

All of these are equal but have their uses in different contexts. The notation dy
dx , introduced by

Gottfried Leibniz, clearly embodies the idea of the slope
(

∆y
∆x

)
. To write f ′(a) in this notation we

often write dy
dx

∣∣∣
x=a

where the right bar means “evaluated at”. The last three notations reflect the idea

of differentiation as an operation on a function. So d
dx is to be understood as an operator that acts

on the function following it to differentiate it. In this notation, using our last example, we could write:

d

dx

(√
x− 1

)
=

1

2
√
x− 1

Notice how, in this notation, no reference must be made to a y or an f .

Definition: If f ′(a) exists, then function f is said to be differentiable at a .

Definition: A function f is differentiable on an interval (a, b) if it is differentiable at every value
in (a, b).

Theorem 3-1: If function f(x) is differentiable at x = a then f is continuous at x = a .

Note the converse (“If f is continuous at a then f is differentiable a”) is not true.

Example 3-8

The absolute value function f(x) = |x| is not differentiable at x = 0 despite being continuous there.
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Since the derivative is the slope of the tangent to y = f(x) several ways f may fail to be differentiable
at a value x = a occur are:

1. The graph has a corner at (a, f(a)).

2. The graph has a discontinuity at x = a

3. The graph has a vertical tangent line at (a, f(a)). (infinite slope)

These situations are illustrated below. Notice in the first and last example the function is continuous
at a.

y

x

f(x) = |x|

y

xa

y

xa

Example 3-9

For the graphically defined function:

−2

−1

1

2

3

4

5

6

y

−4 −3 −2 −1 1 2 3 4 5 6 x

f(x)

1. List all values of x at which f(x) fails to be continuous.

2. List all values of x at which f(x) fails to be differentiable.
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Answers:
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Exercise 3-2

1-2: Use the definition of the derivative at a value a to find the following.

1. f ′(2) if f(x) =
1

x+ 1

2. g′(4) if g(x) =
√

2x

3-8: Use the definition of the derivative to calculate f ′(x) for each of the following functions.

3. f(x) = x2 + 3

4. f(x) =
1

3x

5. f(x) = (x+ 2)2

6. f(x) =
√
x+ 2

7. f(x) =
3x+ 2

x+ 1

8. f(x) =
1√
x

9. Prove that f(x) =
√

(x− 2)2 is not differentiable at x = 2 by showing that the following
left and right hand limits differ:

lim
h→0−

f(2 + h)− f(2)

h
6= lim
h→0+

f(2 + h)− f(2)

h
.

10. Which of the following graphs represent functions that are differentiable at x = 0? (Explain
why or why not).

(a)

x

y

(b)

x

y

(c)

x

y

(d)

x

y
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3.3 Differentiation Formulae

Several theorems for the derivatives of functions will now be introduced which will allow us to find the
derivative of a function without having to resort to the limit definition.

Theorem 3-2: If f is a constant function, f(x) = c, then

f ′(x) = 0 or
d

dx
(c) = 0

Example 3-10

d

dx
(5) = 0, (π)′ = 0,

d

dx
(−20) = 0,

(
−2

3

)′
= 0

Theorem 3-3: If f is a power function, f(x) = xn, where n is any real number, then

f ′(x) = nxn−1 or
d

dx
(xn) = nxn−1

This is known as the Power Rule.

Note as a particular example of the last theorem, when n = 1 we have f(x) = x and

f ′(x) = 1x1−1 = x0 = 1 .

In Leibniz notation this is easy to remember d
dxx = 1 because dx

dx should be 1!

The last theorem can be demonstrated from first principles as demonstrated in the following examples.

Example 3-11

Use the definition of the derivative to prove the following power function derivatives.

1.
d

dx

(
x2
)

= 2x

2.
d

dx

(
1

x

)
= − 1

x2
(Note:

1

x
= x−1)

Differentiation involving the Power Rule often requires rewriting an expression as a power. Here
is a summary of some relevant identities involving powers:

x0 = 1

xm · xn = xm+n

xm

xn
= xm−n

n
√
x = x

1
n

1

xn
= x−n

(xm)n = xmn

(xy)n = xnyn(
x

y

)n
=

xn

yn
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Example 3-12

Use the Power Rule directly to find the following derivatives.

1.
d

dx

(
x5
)

2.

(
1

x10

)′
3.
(

5
√
x
)′

4.

(
1√
x

)′

5.
d

dx

(
x23
)

6.
d

dt
(tπ)

7.
d

dy

(
y
√

3
)

Theorem 3-4: Suppose c is a constant and f ′(x), g′(x) exist at a value x.

1. If h(x) = cf(x), then h′(x) exists and h′(x) = cf ′(x). Equivalently:

(cf)′ = cf ′ or
d

dx
(cf) = c

df

dx

2. If h(x) = f(x) + g(x), then h′(x) exists and h′(x) = f ′(x) + g′(x). Equivalently:

(f + g)′ = f ′ + g′ or
d

dx
(f + g) =

df

dx
+
dg

dx

3. If h(x) = f(x)− g(x), then h′(x) exists and h′(x) = f ′(x)− g′(x). Equivalently:

(f − g)′ = f ′ − g′ or
d

dx
(f − g) =

df

dx
− dg

dx

We note in the previous theorem that the functions f and g need not be differentiable everywhere –
the theorem applies wherever their derivatives exist. Also it follows follows from the theorem that the
result may be generalized to sums or differences of a finite number of terms. (i.e. (f + g . . . + h)′ =
f ′ + g′ + . . . + h′, etc.) Mathematically, the previous theorem shows that differentiation is a linear
operation.

Example 3-13

Use the previous theorems to evaluate the following derivatives directly:

1.
d

dx

(
3x4
)

2.
d

dx

(
−5x2

)
3.

d

dx

(
2x2 − 3x+ 1

)
4. y′ if y =

3x3 − x2 + 5

x

5. f ′(x) if f(x) = x4 − 3

x2
+ 5
√
x+

2
√
x

x

6.
d

dx

(
xa

2+2

π + ln 5
+

2e

xb

)
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Answers:
Page 177

Exercise 3-3

1-8: Differentiate the following functions involving powers, sums and constant multiplication.
(Any value that is not the function variable should be considered a constant.)

1. f(x) =
√
x− x12

2. g(x) =
1√
x5

3. y =
4x3

5

4. f(u) = u−4 + u4 ; Also find f ′(1) .

5. f(x) = (x3 + x)2 (Hint: Expand first.)

6. f(x) =
√

3x+ 5

√
x

3

(Hint: n
√
xy = ( n

√
x)( n
√
y) and n

√
x

y
=

n
√
x

n
√
y

.)

7. f(x) = sin(π/15)x2a

8. s(t) = −g
2
t2 + v0t+ s0

9. Calculate the instantaneous rates of change given in problems 1(b), 2(d), and 3(b) of Exer-
cise 3-1 directly using the derivative.

10. Find the equation of the tangent line to the curve y = x+
√
x at the point P (1, 2).

11. Find the value(s) of x for which the curve y = 2x3− 4x2 + 5 has a horizontal tangent line.

12-13: The following problems consider the meaning of the derivative as a rate of change.

12. The concentration of carbon dioxide in the Earth’s atmosphere has been observed at
Mauna Loa Observatory in Hawaii to be steadily increasing (neglecting seasonal oscilla-
tions) since 1958. A best fit curve to the data measurements taken from 1982 to 2009 yields
the following function for the concentration in parts per million (ppm) as a function of the
year t :

C(t) = 0.0143(t− 1982)2 + 1.28(t− 1982) + 341

(a) What was the level of CO2 in the air in the year 2000?

(b) At what rate was the CO2 level changing with respect to time in the year 2000?

(c) By what percentage did the CO2 level change between 2000 and 2005?

13. A conical tank has a height of 5 metres and radius at the top of 2 metres.

(a) Show that the volume of liquid in the tank when it is filled to a depth y is given by

V =
4π

75
y3

(b) What is the rate of change of volume with respect to depth when the tank is filled to
4 metres?
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3.4 Product and Quotient Rules

Theorem 3-5: If h(x) = f(x)g(x) and f ′(x) and g′(x) exist at a value x then h′(x) = f ′(x)g(x) + f(x)g′(x) .
Equivalently:

(fg)′ = f ′g + fg′ or
d

dx
(fg) =

df

dx
g + f

dg

dx

This is known as the Product Rule.1

Note:

• The derivative of the product is not the product of the derivatives, (fg)′ 6= f ′g′ !

• Memorize the product rule in words, namely

“The derivative of a product is the derivative of the first function times the second plus
the first times the derivative of the second.”

Example 3-14

Use the Product Rule to evaluate the following:

1. If f(x) = x2, g(x) = x3, and h(x) = f(x)g(x) = x5, find h′(x) directly and using the Product
Rule. Confirm that h′(x) is not the product f ′(x)g′(x).

2. If y = (x2 + 3x+ 1)(x3 − 2), find y′.

3. If f(t) = (t6 − 2t3 + t2 − 3)(
√
t− 2), find f ′(t).

4. Evaluate
d

dz

[(
1

z4
− 2z3 +

√
z

)(
z2 + 5

)]

5. If g(z) =

(
1

z
+

2

z5

)(
z3 − 4z2 + 10

)
, find dg

dz .

1To prove the Product Rule we use our limit theorems as follows. For clarity call H(x) = f(x)g(x).

H′(x) = lim
h→0

H(x+ h)−H(x)

h

= lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)

h

= lim
h→0

f(x+ h)g(x+ h)− f(x)g(x+ h) + f(x)g(x+ h)− f(x)g(x)

h

= lim
h→0

[
f(x+ h)− f(x)

h
g(x+ h) + f(x)

g(x+ h)− g(x)

h

]
= lim

h→0

f(x+ h)− f(x)

h
· lim
h→0

g(x+ h) + lim
h→0

f(x) · lim
h→0

g(x+ h)− g(x)

h

= f ′(x)g(x) + f(x)g′(x)

Note that since g is differentiable at x it is continuous at x and so lim
h→0

g(x+ h) = g(x) follows.
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Theorem 3-6: If h(x) =
f(x)

g(x)
with g(x) 6= 0 and f ′(x) and g′(x) exist at a value x then

h′(x) =
f ′(x)g(x)− f(x)g′(x)

[g(x)]
2 .

Equivalently: (
f

g

)′
=
f ′g − fg′

g2
or

d

dx

(
f

g

)
=

df
dxg − f

dg
dx

g2

This is known as the Quotient Rule.

Note:

• The derivative of a quotient is not equal to the quotient of the derivatives,

(
f

g

)′
6= f ′

g′
.

• The quotient rule is not symmetric under interchange of f ↔ g like the product rule is because
f/g 6= g/f . The numerator picks up a minus sign (so order matters) and only the original
denominator appears in the denominator of the result.

• Memorize in words:

“The derivative of a quotient equals the the derivative of the top times the bottom minus
the top times the derivative of the bottom all over the bottom squared.”

Example 3-15

Evaluate the following derivatives using the Quotient Rule.

1. If f(x) =
x2 − 3x+ 5

x− 1
find f ′(x) .

2. If g(t) =
t4 + 2t

t3 − 5t2 + 5
find

dg

dt
.

3. Evaluate
d

dz

(√
z + 1

z2 + 5

)
.

When differentiating products and quotients where one of the functions is a constant function it is
much easier to pull the constant out front directly using our constant rule (cf)′ = cf ′ .

Example 3-16

You do not need to use the quotient rule to evaluate the following derivative with a constant
denominator:

d

dx

(
x2

2

)
=

d

dx

(
1

2
x2

)
=

1

2

d

dx

(
x2
)

=
1

2
(2x1) = x .

If one evaluates this using the quotient rule a zero arises due to the differentiation of the constant.
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As with the other rules, the product and quotient rules may need to both be applied or applied
repeatedly when evaluating a given derivative.

Example 3-17

Differentiate the following functions:

1. f(x) =
(
√
x+ 1)

(
x2 − 3x+ 1

)
x3 + 4

2. g(x) =
(

3
√
x+ 1

) (
x3 + 4x2 − 4

) (
x2 + 1

)

As the last example shows one can generalize the product rule to three (or more) terms as follows
(fgh)′ = f ′gh+ fg′h+ fgh′, etc.

Answers:
Page 177

Exercise 3-4

1-8: Differentiate the following functions involving products and quotients. (Any value that is
not the function variable should be considered a constant.)

1. f(x) =
(
x4 − 3x2 + 2

) (
x

1
3 − x

)
2. h(x) =

(
x3 + πx+ 2

)(
2 +

1

x3

)
3. y =

(
x2 − 1

) (
x3 + 2

) (
2x2 +

√
x
)

4. f(x) =
x− 4

x− 6

5. f(θ) =
θ2 + 3θ − 4

θ2 − 7

6. g(x) =
1 + x2

√
x

; Also find g′(4) .

7. f(v) =
(2v + 3)(v + 4/v)

v2 + v

8. h(x) = cx2 +
(
3
√
x+ 2

) (
2x2 + x

)
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3.5 Further Geometrical Applications of the Derivative

Note the following properties of the slope of a line:

• The slope of horizontal line is zero (m = 0).

• If two lines are parallel then their slopes are equal (m1 = m2)

• If two lines are perpendicular then their slopes satisfy m1 ·m2 = −1 , that is they are the

negative reciprocals of each other,

(
m2 = −

1

m1

)
.

Definition: The normal line to a curve at point P is the line through P perpendicular to the
tangent line.

y

x

f(x)

t

n

P

With these definitions in mind we can solve various problems arising from geometry, keeping in mind
that the derivative at x gives the slope of the tangent at P (x, f(x)).

Example 3-18

1. Find the equation of the tangent and normal lines to the curve y = 2x3 + 3x2−2 when x = 1.

2. For what values of x does the graph of f(x) = 2x3 − 3x2 − 6x+ 87 have a horizontal tangent
line?

3. Find a tangent line to the graph of y = 3x2 +4x−6 that is parallel to the line 5x−2y−1 = 0.

Answers:
Page 178

Exercise 3-5

1. Find the line through the point P (2, 1) that is parallel to the tangent to the curve
y = 3x2 + 2x+ 1 at the point Q(1, 6) .

2. Find the normal line to the curve y =
√
x+ x2 at the point P (1, 2) .

3. Find any points on the curve y = x3 − 4 with normal line having slope − 1

12
.
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3.6 General Power Rule

Theorem 3-7: If n is any real number and f(x) is differentiable at x then

d

dx
[f(x)]

n
= n [f(x)]

n−1
f ′(x) .

This is the General Power Rule.2

Example 3-19

Differentiate the following:

1. y =
(
x2 − 2x+ 5

)8
2. y =

2√
x3 − 2x2 + 3

3. f(t) =

[
1

t
+ (2− t)5

]−4

4. g(x) =

(
x2 + 3

)5
3
√
x+ 1

Answers:
Page 178

Exercise 3-6

1-6: Differentiate the following functions requiring use of the General Power Rule. (Any value
that is not the function variable should be considered a constant.)

1. f(x) =
(
x2 + 3

)9
2. g(x) =

1

x+
√
x

3. f(t) =
7√

2t2 + 3t+ 4

4. y =

(
4x+ 3

x2 + x

)− 1
7

5. h(x) = 3
√

5xn + 4c

6. f(x) =
[(

2x+
√
x
)4

+ 3x
]5

2For positive integer n the General Power Rule follows from the generalized Product Rule since

([f(x)]n)′ = [f(x)f(x) · · · f(x)︸ ︷︷ ︸
n factors

]′ = f ′(x)f(x) · · · f(x) + f(x)f ′(x) · · · f(x) + · · ·+ f(x)f(x) · · · f ′(x)︸ ︷︷ ︸
n equal terms

= n [f(x)]n−1 f ′(x) .

The rule is also just a special case of the Chain Rule (Section 3.8) with the outer function taken to be f(u) = un so that
d

dx
un = nun−1 ·

du

dx
.
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3.7 Derivatives of Trigonometric Functions

Using our derivative laws, the trigonometric identities, and recalling the following trigonometric limits,

lim
θ→0

sin θ = 0 lim
θ→0

cos θ = 1 lim
θ→0

sin θ

θ
= 1 lim

θ→0

1− cos θ

θ
= 0 ,

the next result may be shown.

Theorem 3-8: The basic trigonometric functions have the following derivatives:

1.
d

dx
(sinx) = cosx

2.
d

dx
(cosx) = − sinx

3.
d

dx
(tanx) = sec2 x

4.
d

dx
(cscx) = − cscx cotx

5.
d

dx
(secx) = secx tanx

6.
d

dx
(cotx) = − csc2 x

Proof :

1. Let f(x) = sinx. Then

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

sin(x+ h)− sinx

h

= lim
h→0

sinx cosh+ cosx sinh− sinx

h

= lim
h→0

[
sinx

(cosh− 1)

h
+ cosx

sinh

h

]
= (sinx)(0) + (cosx)(1)

= cosx

3.
d

dx
(tanx) =

d

dx

(
sinx

cosx

)
=

(cosx)(cosx)− (sinx)(− sinx)

[cosx]2
=

1

cos2 x
=

(
1

cosx

)2

= sec2 x

5.
d

dx
(secx) =

d

dx

(
1

cosx

)
=

d

dx
(cosx)

−1
= − (cosx)

−2
(− sinx) =

1

cosx
· sinx

cosx
= secx tanx

Once the basic trigonometric derivatives are known one may use them to differentiate any function
involving a trigonometric function.

Example 3-20

Evaluate the following:

1.
d

dx
(sinx cosx)

2.

(
x2 + 3

sinx

)′
3. z′ if z = cos2 θ + cos θ

4.
dz

dθ
if z = tan3 θ
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Example 3-21

Suppose f
(π

3

)
= 4 and f ′

(π
3

)
= −2 and let g(x) = f(x) sinx. Find g′

(π
3

)
.

Example 3-22

Find the (x-coordinates of the) points on the curve y =
cosx

2 + sinx
at which the tangent is horizontal.

Answers:
Page 178

Exercise 3-7

1. Find the derivative f ′(x) of f(x) = sin 4x using the definition of the derivative.

2-5: Differentiate the following functions involving trigonmetric functions.

2. f(x) = x2 cosx

3. f(t) =
t3

sin t+ tan t

4. H(θ) = csc θ cot θ ; Also find
dH

dθ

∣∣∣∣
θ=π/3

.

5. f(x) = (sinx+ cosx)(secx− cotx)

6. Calculate
df

dθ
for the function f(θ) = sin2 θ + cos2 θ

(a) Directly by using the rules of differentiation.

(b) By first simplifying f with a trigonometric identity and then differentiating.

7-8: For each curve and point P ,
(a) Confirm the point P lies on the curve. (b) Find the equation of the tangent line at P .

7. y = x tanx at point P
(π

4
,
π

4

)
8. y = 5x+ 3 sin(2x)− 2 cos(3x) at point P (0,−2).
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3.8 The Chain Rule

Suppose

h(x) =
√

3x2 + 2x+ 1

Since h(x) =
(
3x2 + 2x+ 1

) 1
2 the derivative could be found using the General Power Rule. Notice

h(x) can be written as a composition of two functions. Let

y = f(u) =
√
u

and
u = g(x) = 3x2 + 2x+ 1

then
y = h(x) = f (g(x))

The following rule generalizes the General Power Rule to the case where the external function in the
composition (written f here) is an arbitrary differentiable function of u, not just f(u) = un.

Theorem 3-9: If the derivatives g′(x) and f ′ (g(x)) both exist, and h(x) = f ◦ g(x) = f (g(x)) is the
composite function then

h′(x) = f ′ (g(x)) · g′(x) .

Equivalently, if y = f(u) and u = g(x) are both differentiable then this result may also be stated

dy

dx
=
dy

du
· du
dx

.

This is known as the Chain Rule.

Example 3-23

Solve the following using the Chain Rule where possible to find the derivatives:

1. If h(x) =
√

3x2 + 2x+ 1 find h′(x) .

2. If y = u3 + u2 + 1 and u = (2x2 − 1),

(a) Find y(x).

(b) Find the derivative
dy

dx
.

(c) Find
dy

dx

∣∣∣∣
x=2

.

3. If y = u4 + 3u2 − 3 and u =
√
x − 1, find

dy

dx
.

4. If h(x) = cot
(
3x2 + 5

)
find h′(x) .

5. If y = 5
3

√
1 +
√
t find y′ .

6. If z = tan
√

1 + x3 find
dz

dx
.

7. Evaluate
d

dθ

(
cos3θ + cos θ3

)
.

8. Evaluate

(
3

√
x2 + 1

x3 + 5x

)′
.

9. If y =
1

sin (x− sinx)
, find y′ .

10. If h(z) =
(
z2 − 4z + 5

)4 · sec (3z), find
h′(z) .
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Answers:
Page 179

Exercise 3-8

1-13: Differentiate the following functions requiring use of the Chain Rule. (Any value that is not
the function variable should be considered a constant.)

1. f(x) =
(
x8 − 3x4 + 2

)12

2. g(x) =
√

3x2 + 2 ; Also find g′(2) .

3. f(θ) = sin(θ2)

4. h(θ) = cot2 θ

5. f(x) = sec
[(
x3 + 3

) (√
x+ x

)]
6. y = 4 cos 3

√
x

7. f(x) =
1

3 + sin2 x

8. y = (cscx+ 2)
5

+ x2 + x

9. y = π tan θ + tan(πθ)

10. g(x) =

(√
x+
√
x

)(
x4 − 1

)7
11. f(x) =

(
x− 3

x+ 1

)3

12. A(t) = cos(ωt+ φ) ; Also find
dA

dt

∣∣∣∣
t=0

.

13. f(x) = sin
[
cos
(
x2 + x

)]

14. Find the value(s) of θ for which the curve f(θ) = cos2 θ− sin θ has a horizontal tangent line.
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3.9 Implicit Differentiation

When we define y by placing y on one side of the equation and f(x) on the other we say y is
explicitly defined.

Example 3-24

Explicit: y =
√
x3 + 1 y = x cosx

On the other hand y may be defined implicitly through any equation involving x and y with y
not-isolated on one side or the other:

Example 3-25

Implicit: y2 − x3 = 1 x2 + y2 + 2xy = 10

In the implicit case the curve is defined by finding points (x, y) that satisfy the equation. In the
first implicit example the point (2, 3) is on the curve defined by the equation because 32 − 23 = 1.
Sometimes one may solve the equation for y to rewrite an implicitly defined y as an explicitly defined
one, but this is often not possible. An explicitly defined equation will always be a function, whereas
a curve defined implicitly will often only be a relation. For instance in our first implicit example the
point (2,−3) also lies on the curve so y cannot be described by a function. If we tried to solve it for
y we would get our first explicit example, but notice now, since the square root function is always the
positive root, only half of the implicitly defined curve is present. (y = −

√
x3 + 1 would be a function

describing the lower part of the implicit relation.) The situation is depicted below.

y

x

y =
√
x3 + 1

(2, 3)

−1

y

x

y2 − x3 = 1

(2, 3)

(2,−3)

−1
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Suppose we wanted the tangent slope at (2,−3) for our implicitly defined example. An elegant method
to find the derivative at this point is to use implicit differentiation which involves the following
steps:

Implicit Differentiation

1. Differentiate both sides of the equation with respect to x.

2. Solve the resulting equation for y′.

Differentiating any expression involving only x follows the usual rules. When differentiating y
with respect to x we just get d

dxy = dy
dx = y′. When differentiating a function of y with respect to

x the Chain Rule is required:

d

dx
f(y) =

df

dy
· dy
dx

= f ′(y) · y′

In other words, differentiate the function of y as you would x but remember to multiply it by y′.

The following examples illustrate the procedure.

Example 3-26

Find y′ if

1. y3 = 3xy − x3

2. x2y2 + xy = 6x+ 5y

3. cosx+ sin y = xy

4. sin(x+ y) = cosx

5. cos(xy)− tanx+ x5y = sin y

When differentiating implicitly the derivative is usually a function of both the x and y-coordinates.

Example 3-27

Find the equation of the tangent line to the curve y2 − x3 = 1 at P (2,−3) .
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Answers:
Page 179

Exercise 3-9

1-6: Calculate y′ for functions y = y(x) defined implicitly by the following equations. (Any value
that is not x or y should be considered a constant.)

1. x2 + y2 = 3x

2. xy2 − 2x3y + x3 = 1 ; Also find
dy

dx

∣∣∣∣
(x,y)=(1,2)

.

3.
x2

a2
+
y2

b2
= 1

4. sin(xy) = y

5. cos(x+ y) + x2 = sin y

6.
sec y

x
= sinx

7. Consider the curve generated by the relation x
2
3 + y

2
3 = 4 .

(a) Confirm that the point P (−1, 3
√

3) lies on the curve.

(b) Find the equation of the tangent line to the curve at the point P .

The following exercise requires use of all the differentiation rules we have introduced.

Answers:
Page 180

Exercise 3-10

1-12: Differentiate the following functions using any appropriate rules.

1. f(x) = 4x5 + 3x2 + x+ 4

2. y = x8 +
2

x3
−
√
x+

4√
x

+ 10

3. g(t) =
3
√
t2 + t4 +

6

t2

4. f(x) =
x+ 5√
x

5. g(x) =
(√
x+ 3x+ 1

)
(x+ π)

6. h(y) =
(y + 4)

3

y + 5

7. y =
4
√
x3 + 2x+ 5

8. f(θ) = cos 3θ + sin2 θ

9. g(x) = tan
(
x2 + 1

)
cos (x)

10. y =
4

√
(sin t+ 5)

3

11. f(x) =
3

√
x4 + 5x− 1

x2 − 3

12. x3y4 + y2 = xy + 6
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3.10 Higher Derivatives

Consider the function y = f(x) with first derivative f ′(x). The latter is itself a function, and if we
differentiate the derivative we get the second derivative, f ′′(x):

f ′′(x) =
d

dx
(f ′(x))

Other notation for the second derivative is:

y′′
d2y

dx2

d2f

dx2

d2

dx2
f D2f D2

xf

Putting the 2 in the numerator before the y allows us to write the second derivative operator
d2

dx2

separately from the function following it upon which it acts.3

Similarly we can differentiate again to get the third derivative of a function, f ′′′(x), also denoted:

y′′′
d3y

dx3

d3f

dx3

d3

dx3
f D3f D3

xf

Example 3-28

Find the requested derivatives.

1. If y = 3x4 − 5x3 + 10x, find y′, y′′, and y′′′ .

2. If y =
√
t2 + 12t, find

dy

dt
and

d2y

dt2
.

3. If f(x) = x3 + tanx, find f ′(x) and f ′′(x) .

4. Find
d2

dx2

(
x2

x+ 1

)
.

It is also possible to use implicit differentiation to find higher derivatives. First find the first derivative,
y′, as usual. Then differentiate both sides of that function to find y′′. One can replace any y′’s which
show in the y′′ formula by your expression for y′ thereby writing y′′ entirely in terms of x and y only.

Example 3-29

Use implicit differentiation to find y′′ for the following:

1. x2 + y2 = 9

2. sinx = xy

In general upon differentiating y = f(x) n times one gets the nth derivative, f (n)(x), which may also
be written:

y(n) dny

dxn
dnf

dxn
dn

dxn
f Dnf Dn

xf

3The notation also keeps the units straight. For instance, for acceleration, as we will see, which is the second

derivative of spatial position (a distance) with respect to time, a = d2s
dt2

, only the time unit is squared, not the distance

to give dimensions of acceleration of m/(sec2). The squaring of the denominator unit (and not the numerator which
remains as is) is reflected correctly in the second derivative notation.
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Example 3-30

Find f (20)(x) if f(x) = 1
x5 .

Answers:
Page 180

Exercise 3-11

1-4: Calculate the second derivative for each of the following functions.

1. f(x) = cotx

2. f(x) = (x− 2)10 ; Also find f ′′(3) .

3. y = x3 secx

4. x2 − y2 = 16 (Use implicit differentiation.)

5-6: When one uses derivatives, their simplification becomes important.

5. Show that f ′′(x) =
32
(
3x2 + 16

)
(x2 − 16)

3 for f(x) =
x2

x2 − 16
.

6. Show that f ′′(x) =
8x+ 8

(x− 2)4
for f(x) =

x2

x2 − 4x+ 4
.
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3.11 Acceleration in One Spatial Dimension

Recall that the average velocity over the time interval from t = a to t = a + h for motion in one
dimension is

average velocity =
f(a+ h)− f(a)

h
.

while the (instantaneous) velocity at time t = a is

v(a) = lim
h→0

f(a+ h)− f(a)

h
,

where here displacement in one spatial dimension was given by the position function of the particle,
s = f(t). In other words velocity at a given time t is just the derivative of displacement:

v(t) =
ds

dt

∣∣∣∣
t

= f ′(t)

The acceleration of a particle is just the second derivative of the displacement or the derivative
therefore of the velocity:

a(t) = v′(t) = f ′′(t)

Example 3-31

The position function of a particle moving along a line is given by s = f(t) = t3 − 9t2 + 24t where
t is the time in seconds and s is the displacement in metres.

1. Find the velocity and the acceleration at time t.

2. What are the velocity and acceleration of the particle

(a) After 1 second?

(b) After 3 seconds?

3. When is the particle (instantaneously) at rest?

4. When is the particle moving in the positive direction?

Example 3-32

If a ball is thrown vertically upward with an initial velocity of 25 m/sec then its height, due to
gravity, after t seconds is approximately s = 25t− 5t2 .

1. What is the maximum height reached by the ball?

2. What is the velocity of the ball when it is 30 m above the ground

(a) On its way up?

(b) On its way down?



80 3.12 Related Rates

3.12 Related Rates

If a balloon is being blown up both its radius and its volume are changing in time. That is there are two
rates dr

dt and dV
dt of interest. These two rates are related to each other, i.e. they are not independent.

In a related rates problem a formula is found relating the rates of interest and it is used to solve for
an unknown rate under given conditions.

The following steps are typically followed in a related rates problem:

Steps for Solving a Related Rates Problem

1. Identify rates, Draw Diagram: Identify the given and unknown rates of the problem,
labelling the variables and their time derivatives appropriately. Often a diagram illustrating
the variables is helpful at this step. Note the rates of the problem will involve time in their
units.

2. Determine Variable Equation: Find an equation relating the variables involved in the
rates of the problem. If other variables appear in the equation find a constraint to write
them in terms of the rate variables and thereby remove them.

3. Differentiate: Differentiate both sides of the equation with respect to time t to get the
related rates equation. Since the variables are assumed to be functions of time, the Chain
Rule must be used.

4. Solve Unknown Rate: Use the given rate information and other given information in the
related rates equation to solve for the unknown rate. Sometimes the equation in Step 2 (or
others) must be used to solve for one of the unknown values needed in the related rates
equation.

Example 3-33

1. A ladder 5 metres long with one end against a vertical wall and one end on the ground begins
to slide. If the bottom of the ladder is sliding away from the wall horizontally at a rate of
0.5 m/sec, what is the vertical velocity of the top of the ladder when the bottom of the ladder
is 3 m from the wall?

2. At 2 p.m. Albert is 100 km due west of Beth. If Albert is cycling directly south at 35 km/h
while Beth is cycling directly north at 25 km/h, how fast is the distance between the cyclists
changing at 6 p.m. ?

3. A stone is thrown into a shallow pool of water creating a circular ripple. If the radius of
the ripple increases at a constant 2 m/sec, at what rate is the area enclosed by the ripple
increasing at the end of 6 seconds?

4. After a hot air balloon is launched it rises vertically at a constant speed of 2 m/s. When the
balloon is at an altitude of 7 m a member of the launch crew drives away on a moped down a
straight road at a speed of 5 m/s. How fast is the distance between the driver and the balloon
changing 4 seconds later?

5. A two-metre tall man walks toward a lamppost that is 5 metres in height. If the man is
walking at a speed of 1.8 m/s, how fast is the length of his shadow changing when he is
3 metres from the lamppost?
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6. A model in a fashion show walks down the straight runway at a speed of 0.75 m/s. A person
in the audience located 12 metres from the runway keeps a camera focused on the model. At
what rate is the camera rotating when the model is 5 metres from the point on the runway
closest to the person?

7. The Great Pyramid of Khufu at Giza is a square pyramid with approximate base side length
of B = 230 m and height H = 150 m. If it took approximately 20 years to build, one can use
the formula for the volume of a pyramid to estimate the rate of change of volume with time
(assumed constant) to be about 360 m3/day. Before it was finished the construction was a
frustum of a pyramid (i.e. a pyramid missing its top) of height h, base side length B, and
top side length b. How fast was the height changing when the structure was 100 m high? Use
that the volume of a frustum of a pyramid is given by V = 1

3h(A1 +A2 +
√
A1A2) where A1

and A2 are the areas of its square base and top respectively. (Hint: Use constants B and H
until the end of your calculation.)4

Answers:
Page 181

Exercise 3-12

1-7: Solve the following problems involving related rates.

1. An oil spill spreads in a circle whose area is increasing at a constant rate of 10 square
kilometres per hour. How fast is the radius of the spill increasing when the area is 18 square
kilometres?

2. A spherical balloon is being filled with water at a constant rate of 3 cm3/s . How fast is the
diameter of the balloon changing when it is 5 cm in diameter?

3. An observer who is 3 km from a launchpad watches a rocket that is rising vertically. At a
certain point in time the observer measures the angle between the ground and her line of
sight of the rocket to be π/3 radians. If at that moment the angle is increasing at a rate of
1/8 radians per second, how fast is the rocket rising when she made the measurement?

4. A water reservoir in the shape of a cone has height 20 metres and radius 6 metres at the
top. Water flows into the tank at a rate of 15 m3/min, how fast is the level of the water
increasing when the water is 10 m deep? Hint: Use similar triangles. (See Section 1.2.9)

5. At 8 a.m., a car is 50 km west of a truck. The car is traveling south at 50 km/h and the
truck is traveling east at 40 km/h. How fast is the distance between the car and the truck
changing at noon?

6. A boy is walking away from a 15-metres high building at a rate of 1 m/sec . When the boy
is 20 metres from the building, what is the rate of change of his distance from the top of the
building?

7. The hypotenuse of a right angle triangle has a constant length of 13 cm. The vertical leg of
the triangle increases at the rate of 3 cm/sec. What is the rate of change of the horizontal
leg, when the vertical leg is 5 cm long?

4To check the answer is of the correct order of magnitude note that the average rate of change with height over the
time of construction is

∆h

∆t
=

150 m

(20 years)(365.25 days/year)
=

150 m

7305 days
= 0.02 m/day

Should the answer to the actual problem be higher or lower than this value? Also note that this problem naively assumes
that lifting blocks to the top of the pyramid required the same time as placing those on the bottom. In fact it is believed
long ramps of earth were created to place higher blocks. This has not been factored into these calculations.
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3.13 Differentials

Let y = f(x) be a curve in the xy-plane and let P (x, f(x)) and Q (x+ ∆x, f(x+ ∆x)) be points on
the curve.

For the given increment in x, ∆x, the increment in y is

∆y = f(x+ ∆x)− f(x) .

We define the differential of y to be:
dy = f ′(x)dx .

Here dy is considered a single variable which is a function of both x and the differential dx. The
definition is motivated by the fact that, in Leibniz notation, f ′(x) = dy

dx .

Letting dx = ∆x one has that:

• ∆y is the change in the height of the curve y = f(x)

• dy is the change in the height of the tangent line to the curve y = f(x) at P (x, f(x)).

Diagrammatically we have:

y

x

f(x+ ∆x)

f(x)
P (x, f(x))

Q(x+ ∆x, f(x+ ∆x))

dy
∆y

dx = ∆x

x x+ ∆x

As dx = ∆x→ 0 then

∆y ≈ dy

f(x+ ∆x)− f(x) ≈ f ′(x)∆x

The approximation, as clear from the diagram, is only valid for small ∆x.
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Example 3-34

Compare ∆y and dy if y = f(x) = x4 + x+ 2 and x changes from 1.0 to 1.01 .

The differential approximation ∆y ≈ dy is particularly useful for approximating the absolute error ∆y
of a quantity that depends on a variable x with known error ∆x. This is because, by assumption, the
error ∆x is typically small, which is when the differential approximation is valid.

Example 3-35

A square rug is measured to have a side length of 3.00± 0.02 metres. What is the area of the rug?
(Include its absolute error.)

From the differential approximation of ∆y it follows that

f(x+ ∆x) ≈ f(x) + f ′(x)∆x .

Example 3-36

Use differentials to find an approximation to
3
√

1.02 .

For P (a, f(a)) we have, replacing x in our previous formula with a:

f(a+ ∆x) ≈ f(a) + f ′(a)∆x .

The function at a value x near a will be well-approximated by the tangent at P evaluated at x. Setting
x = a+ ∆x in our last formula (so ∆x = x− a) gives:

f(x) ≈ f(a) + f ′(a)(x− a) .

The right hand side of this equation is just the expression for the tangent line. This is the linear or
tangent line approximation of f at a. The tangent function,

L(x) = f(a) + f ′(a)(x− a) ,

is called the linearization of f at a.

Example 3-37

1. Find the linear approximation (linearization) L(x) of the function g(x) = 3
√

1 + x at a = 0
and use it to approximate g(−0.05).

2. Find the linearization L(x) of the function f(x) =
1√

2 + x
near a = 0 .

A better approximation to f(x) near a is the quadratic approximation given by:

f(x) ≈ f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2

Example 3-38

Find the quadratic approximation of f(x) = 3
√
x near a = 8 .
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Answers:
Page 181

Exercise 3-13

1-2: Find the volume V and the absolute error ∆V of the following objects.

1. A cubical cardboard box with side length measurement of l = 5.0± 0.2 cm.

2. A spherical cannonball with measured radius of r = 6.0± 0.5 cm.

3-4: Find the linear approximation (linearization) L(x) of the function at the given value of x.

3. f(x) =
√

2x3 − 7 at x-value a = 2 .

4. f(x) = tan(x) at x-value a = π/4 .
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Answers:
Page 181

Chapter 3 Review Exercises

1-3: For each function calculate f ′(x) using the definition of the derivative.

1. f(x) = x3 + 2

2. f(x) =
4x− 3

x+ 2

3. f(x) =
√

2x+ 1

4-10: Differentiate the functions.

4. y = 3x4 +
3
√

2x− 5√
x

+ π

5. g(x) =
(√

2x− 4x+ 3
)

(3x+ sinx)

6. h(y) =

√
y + 5

3y + 2

7. f(θ) = cos2 θ + 4 cos
(
θ2
)

8. g(x) = sec
(
x3 + 4

)
cos(2x)

9. f(x) =
5

√
x3 − 4x+ 10

4x2 + 5

10. x4y3 + 4y2 = xy + sin y

11. Find the equation of the tangent line to the curve y = 3 sinx−2 cos(3x) at the point P (π2 , 3).

12. Find the value(s) of x for which the curve y =
x+ 1

x2 + 3
has a horizontal tangent line.

13. Find the value(s) of θ for which the curve f(θ) = cos(2θ)− 2 cos θ has a horizontal tangent
line.

14. The height h and radius r of a circular cone are increasing at the rate of 3 cm/sec. How fast
is the volume of the cone increasing when h = 8 cm and r = 3 cm?

15. A right triangle has a constant height of 30 cm. If the base of the right triangle is increasing
at a rate of 6 cm/sec, how fast is the angle between the hypotenuse and the base changing
when the base is 30 cm?

16. If the area of an equilateral triangle is increasing at a rate of 5 cm2/ sec, find the rate at
which the length of a side is changing when the area of the triangle is 100 cm3.
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4.1 Maximum and Minimum Values

In practical applications we are often interested in how large or small a function can become. The
following definitions make this concept precise.

Definition: A function f(x) has an absolute maximum (or global maximum) at c if f(c) ≥ f(x)
for all x in the domain D. The number f(c) is called the (absolute) maximum value of f
on D.

Definition: A function f(x) has an absolute minimum (or global minimum) at c if f(c) ≤ f(x)
for all x in the domain D. The number f(c) is called the (absolute) minimum value of f
on D.

Definition: A function f(x) has a relative maximum (or local maximum) at c if f(c) ≥ f(x) over
some open interval (a, b) containing c. The number f(c) is called a relative or local maximum
value of f .

Definition: A function f(x) has a relative minimum (or local minimum) at c if f(c) ≤ f(x) over
some open interval (a, b) containing c. The number f(c) is called a relative or local minimum
value of f .

• Note: The absolute maximum and absolute minimum values of f are called the extreme values
of f . Similarly we define the relative or local extreme values to be the relative maximum
and minimum values.

Example 4-1

For the graphically defined function:

1

2

3

4

5

6

y

−4 −3 −2 −1 1 2 3 4 5 6 7 8 x

f(x)

Find the (absolute) extreme values and relative extreme values as well as their locations.
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We note that a function need not have any extreme values, absolute or relative. The function y = x3

is such a function.

y

x

f(x) = x3

The following theorem gives sufficient conditions for absolute extrema to exist.

Theorem 4-1: Suppose f is continuous on the closed interval [a, b]. Then f has an absolute maximum
and an absolute minimum on [a, b]. (i.e. There exist numbers c and d in [a, b] such that f(c) is the
absolute maximum and f(d) is the absolute minimum of f on [a, b].) This is known as the Extreme
Value Theorem.

y

x

f(x)

a d c b

absolute min

absolute max

Note:

• The absolute extreme values can occur at the endpoints of the interval.

• The assumption that the interval be closed is required.

• The locations of the absolute extreme values are not necessarily unique. (There could be two or
more numbers, say, on the interval where the absolute minimum is achieved.)
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Theorem 4-2: If a function f has a relative extremum (maximum or minimum) at c and if f ′(c)
exists, then f ′(c) = 0. This is known as Fermat’s Theorem.

y

x

f(x)

c1 c2

Notes:

• The converse is not true: f ′(c) = 0 does not imply a relative extremum occurs at c. f(x) = x3

has no relative extrema yet f ′(0) = 0.

• A relative extremum can occur at a number where the derivative f ′ does not exist. So f(x) = |x|
has a relative minimum at x = 0 but f ′(0) does not exist as is clear from the following graph of
the function.

y

x

f(x) = |x|

Definition: If c is a number in the domain D of function f such that the derivative vanishes (f ′(c) = 0)
or does not exist, then c is a critical number of f .

Example 4-2

Find the critical numbers of the following functions:

1. f(x) = x3 − 2x2

2. g(t) = t(t− 2)2

3. f(x) = 3
√
x(4− x)

4. g(t) =
t2 + 5

t− 2

5. f(θ) = cos(2θ) + θ

6. h(z) =
√
z
(
z2 + 2

)
7. g(t) = 4 sin3 t+ 3

√
2 cos2 t
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The next theorem narrows down the values where relative extrema can potentially occur.

Theorem 4-3: If f has a relative extremum (minimum or maximum) at c, then c is a critical number
of f .

Knowing that an absolute extrema of a continuous function f on [a, b] will either occur in (a, b) at a
relative extrema or at an endpoint, we can now construct a method to find the absolute maximum and
minimum values of a continuous function f on a closed interval [a, b].

Method for Finding Absolute Extrema of continuous f on [a, b]

1. Find all critical numbers in (a, b) .

2. Evaluate f at the critical numbers.

3. Evaluate f(a) and f(b) .

4. The largest of the values from 2. and 3. is the absolute maximum value and the smallest of
these values is the absolute minimum value.

Example 4-3

Find the absolute maximum and minimum of the following functions on the given closed intervals:

1. f(x) = 4x3 − 15x2 + 12x+ 7 on [0, 3]

2. f(x) = (x2 − 4)2 on [−3, 1]

3. f(x) = 1− x 2
3 on [−1, 8]
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Answers:
Page 182

Exercise 4-1

1. Identify the relative maxima, relative minima, absolute maxima, and absolute minima on
each of the following graphs.

(a)

−2 −1 1 2 x

−1

1

2

3

y
(b)

−1 −0.5 0.5 1 x

−1

−0.5

0.5

1

y

(c)

−6 −4 −2 2 4 x

−6

−4

−2

2

4

6

y

2-10: Find the critical numbers of the given function.

2. f(x) = x3 − 9x2 + 24x− 15

3. h(x) = |x|+ 1

4. f(s) =
s

s2 + 6
on the interval [0, 10].

5. f(x) = x3 + 5x2 + 3x+ 1

6. g(t) =
1

4
t4 + 2t2 − 5t+ 6

7. H(x) =
x+ 3

x− 5

8. f(t) =
√
t2 − 4

9. g(x) =
3
√
x2 − 5

10. F (θ) = 2 sin(θ)− θ

11-15: Find the absolute maximum and absolute minimum values and their locations for the given
function on the closed interval.

11. f(x) = x4 − x2 + 1 on [−2, 2]

12. f(x) = x3 + 5x2 + 3x+ 1 on [−1, 0].

13. g(t) =
√
t (t− 2) on [0, 1].

14. H(x) = x
1
3 − 3 on [−1, 8].

15. f(x) = sinx cosx on [0, 2π]
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4.2 The Mean Value and Other Derivative Theorems

We now consider several theorems whose results are used in proving deeper calculus theorems.

Theorem 4-4: Let f be a continuous function on [a, b] that is differentiable on (a, b). If f(a) = f(b)
then there exists a number c in (a, b) such that f ′(c) = 0. (i.e. The tangent line at the point (c, f(c))
is horizontal.) This is known as Rolle’s Theorem.

The situation is illustrated below.

y

x

f(x)

c1 c2

f(a) = f(b)

Notes:

• For the trivial case where f(x) is a constant function we can take any c in (a, b) to prove the
theorem.

• The proof of the theorem for the non-trivial case hinges on the observation that if f(a) = f(b)
then at least one absolute extremum (which exists by the Extreme Value Theorem) must occur
at c within (a, b) and hence be a relative extremum which by Fermat’s Theorem has f ′(c) = 0.

• There may be more than one c with f ′(c) = 0 as illustrated in the diagram.

Example 4-4

Verify that Rolle’s Theorem applies for f(x) = x
√
x+ 6 + 1 on the interval [−6, 0]. Next find a c it

predicts must exist.

Example 4-5

Show that the equation 1 + 2x+ x3 + 4x5 = 0 has exactly one real root on [−1, 0].

Rolle’s Theorem is used to prove the more general Mean Value Theorem to which we now turn.
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Theorem 4-5: Let f be a continuous function on [a, b] that is differentiable on (a, b). Then there
exists a number c in (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

This is known as the Mean Value Theorem.

Geometrically the Mean Value Theorem states that the slope of the secant line between the endpoints
of the curve A(a, f(a)) and B(b, f(b)),

m =
f(b)− f(a)

b− a
,

is equal to the slope of the tangent line, f ′(c), at at least one point C(c, f(c)) along the curve (not an
endpoint).

y

x

f(x)

A

B

C

a bc

If we consider one dimensional motion then the Mean Value Theorem states that the average velocity
for the trip over the time interval [a, b] will equal the (instantaneous) velocity at at least one time c in
(a, b) during the trip.

To prove the Mean Value Theorem one shows that the new function g(x) defined to be the difference
between f(x) and the secant line between (a, f(a)) and (b, f(b)), i.e.

g(x) = f(x)−
[
f(b)− f(a)

b− a
(x− a) + f(a)

]
,

satisfies Rolle’s Theorem. The c guaranteed for g(x) by the latter can be shown to be the c required
for f(x) for the Mean Value Theorem. Also note that Rolle’s Theorem itself follows immediately from
the Mean Value Theorem for if f(b) = f(a) then f ′(c) = 0 in the Mean Value Theorem.

Example 4-6

Verify that the Mean Value Theorem applies for the following functions on the given closed intervals
and find a value of c it predicts must exist.

1. f(x) = 2x3 + x2 − x− 1 on [0, 2]

2. f(x) = x− 3x
1
3 on [0, 8]
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Two corollaries of the Mean Value Theorem are the following:

Theorem 4-6: Suppose f ′(x) = 0 for all x in (a, b), then f is constant on the interval.

Theorem 4-7: Suppose f ′(x) = g′(x) for all x in (a, b), then f(x) = g(x) + C for some constant C.

The former corollary results by applying the M.V.T. to the interval [x1, x2] generated by any two
values x1 and x2 in (a, b). Since the resulting c has f ′(c) = 0 by assumption, this implies f(x2)−f(x1)
must vanish. (i.e. f(x2) = f(x1).) Since x1 and x2 are arbitrarily chosen it follows that all values of
f(x) must equal each other and hence some constant C.

The second corollary follows from the first by applying it to the function h(x) = f(x) − g(x) whose
derivative h′(x) = f ′(x)−g′(x) will identically vanish. Graphically it means that if two functions have
the same derivative they differ at most by a vertical shift.

Answers:
Page 183

Exercise 4-2

1. Using Rolle’s Theorem, show that the graph of f(x) = x3 − 2x2 − 7x − 2 has a horizontal
tangent line at a point with x-coordinate between −1 and 4. Next find the value x = c
guaranteed by the theorem at which this occurs.

2. By Rolle’s Theorem it follows that if f is a function defined on [0, 1] with the following
properties:

(a) f is continuous on [0, 1]

(b) f is differentiable on (0, 1)

(c) f(0) = f(1)

then there exists a least one value c in (0, 1) with f ′(c) = 0. Show that each condition is
required for the conclusion to follow by giving a counterexample in the case that (a), (b), or
(c) is not required.

3. Suppose that f is continuous on [−3, 4], differentiable on (−3, 4), and that f(−3) = 5 and
f(4) = −2 . Show there is a c in (−3, 4) with f ′(c) = −1 .

4. Verify the Mean Value Theorem for the function f(x) = x3 + 2x− 2 on the interval [−1, 2] .
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4.3 Increasing and Decreasing

We now consider how the knowledge of the properties a function and its derivatives can help us in
understanding the behaviour of its graph, in particular finding where the function is interesting. This
analysis will allow us to sketch a function with limited functional evaluation being necessary.

We first consider what it means for a function to be increasing or decreasing. The following definitions
make the intuitive idea of increase and decrease clear:

Definition: A function f(x) is increasing on an interval I if its graph continuously rises as x goes
from left to right through the interval. (i.e. if x1 and x2 are in the interval and x1 < x2, then
f(x1) < f(x2).)

Definition: A function f(x) is decreasing on an interval I if its graph continuously falls as x goes
from left to right through the interval. (i.e. if x1 and x2 are in the interval and x1 < x2, then
f(x1) > f(x2) .)

y

x

f(x) = x2

Decreasing Increasing

y

x

f(x) = x3

Increasing

Example 4-7

From the diagrams, y = x2 decreases on (−∞, 0] and increases on [0,∞) while y = x3 increases on
the interval (−∞,∞).
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Where a function increases or decreases can be determined by the first derivative of a function since
whether a function increases or decreases is related to its tangent slope.

y

x

f(x) = x2

Slope − Slope +

Test for Increasing/Decreasing1

Suppose f is differentiable on (a, b) .

1. If f ′(x) > 0 for all x in (a, b) , then f is increasing on (a, b) .

2. If f ′(x) < 0 for all x in (a, b) , then f is decreasing on (a, b) .

Example 4-8

One may verify for the above examples that d
dxx

2 = 2x is negative when x < 0 (y = x2 decreasing

on (−∞, 0)) and positive when x > 0 (y = x2 increasing on (0,∞)). On the other hand d
dxx

3 = 3x2

is always positive so y = x3 is increasing everywhere.

Critical numbers usually separate intervals of increase or decrease.2 Analysis of whether a function
is increasing or decreasing on each side of a critical number allows us to determine whether a critical
number is a relative extremum and if so, of which kind (maximum or minimum).

First Derivative Test for a Relative Extremum
Let I = (a, b) be an interval containing critical number c of function f and further let f be
continuous on I and differentiable on I (except perhaps at c). Let L = (a, c) and R = (c, b) be the
subintervals to the left and right of c .

1. If f ′ is positive on L and negative on R, then f has a relative maximum at c .

2. If f ′ is negative on L and positive on R, then f has a relative minimum at c .

3. If f ′ has the same sign on L and R (either both positive or negative), then f has no relative
extremum at c .

1To prove this result assume f ′ > 0 on (a, b) and let x1 and x2 be arbitrary points in (a, b) with x1 < x2. Since f
is differentiable on (a, b) it is continuous on [x1, x2] and differentiable on (x1, x2). By the Mean Value Theorem there
exists c in (x1, x2) with f ′(c) = [f(x2) − f(x1)]/(x2 − x1). But c lies in (a, b) so f ′(c) = [f(x2) − f(x1)]/(x2 − x1) is
positive. Since x2 − x1 > 0 it follows that f(x2)− f(x1) > 0 or f(x2) > f(x1). Since x1 and x2 were arbitrarily chosen,
f is increasing on (a, b). A similar argument shows that if f ′ < 0 on the interval the function is decreasing there.

2Though not always, consider y = tan2 x at x = π/2.
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Example 4-9

The function y = x2 has a single critical number of c = 0 where the derivative vanishes. Since the
function decreases to the left of 0 and increases to the right of it, a relative minimum occurs at
x = 0 which is readily verified from the graph of the function. y = x3 also has a critical number of
c = 0 but in this case the function is increasing on the intervals to the left and right of it so there
is no relative extremum at 0.

Example 4-10

Find the open intervals upon which the function

f(x) =
x2 − 2x+ 1

x

is increasing or decreasing. Also find any relative minima and maxima and their locations.

Appendix A reviewing inequalities may be helpful in determining when f ′ is positive and negative.

Answers:
Page 183

Exercise 4-3

1-5: Find the open intervals upon which the following functions are increasing or decreasing. Also
find any relative minima and maxima and their locations.

1. f(x) = x2 + 2x+ 1

2. f(x) =
x2 − 3x+ 1

x− 1

3. f(x) = 4 cosx− 2x on [0, 2π]

4. f(x) = |x|

5. f(x) =

 |x| if x 6= 0

2 if x = 0

6-7: Each graph below is a graph of the derivative f ′ of a function f . In each case use the graph
of f ′ to sketch a possible graph of f .

6.

−2 −1 1 2 x

−3

−2

−1

1

2

3

y
7.

1 2 3 x

−3

−2

−1

0

1

2

3

y



Derivative Applications 99

4.4 Concavity

Like increasing and decreasing, concavity is a property of intervals on a graph.

Definition: The graph of function f(x) is concave upward on (a, b) if f ′ is an increasing function
on (a, b) . Graphically, the curve y = f(x) lies above all its tangent lines on (a, b) .

Definition: The graph of function f(x) is concave downward on (a, b) if f ′ is a decreasing function
on (a, b) . Graphically the curve y = f(x) lies below all its tangent lines on (a, b) .

y

x

f(x) = x3

Concave Down Concave Up

Example 4-11

For y = x3 the graph is concave upward on (0,∞) because the curve lies above the tangent lines at
any point on the interval. Alternatively one sees that as we move from left to right on the interval
the tangent slopes are increasing. Similarly y = x3 is concave down on (−∞, 0) as the curve lies
below the tangent line at any point in the interval. Alternatively the tangent slopes are decreasing
as one moves from left to right through the interval.

An easy way to remember concavity is to note that if the interval looks like part of the mouth of a
happy face, ,, then it is concave upward. If it is part of the mouth of a sad face, /, then it is concave
downward.
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Since the second derivative f ′′(x) tells us whether the derivative (and hence tangent slope) is increasing
or decreasing we can determine the concavity on an interval using it as follows.

Test for Determining Concavity
Suppose function f is twice differentiable on an interval (a, b) .

1. If f ′′(x) > 0 for all x in (a, b), then the graph of f is concave upward on (a, b) .

2. If f ′′(x) < 0 for all x in (a, b), then the graph of f is concave downward on (a, b) .

To remember this note that f ′′ is positive when the function is concave upward (,) and negative
when the function is concave downward (/).

Example 4-12

For y = f(x) = x3 we have f ′′(x) = 6x which is positive for x > 0 and negative for x < 0 which
indicates the curve is concave upward and concave downward on those intervals as was already
observed.

Just as intervals of increasing and decreasing are often punctuated by locations of relative maxima
and minima, regions of concavity for a graph are often broken up by inflection points:

Definition: An inflection point is a point P on the graph of a function at which the function is
continuous and the graph changes from concave upward to concave downward or vice versa.

Due to the concavity test, possible inflection points are located where f ′′(c) = 0 or f ′′(c) does not
exist.

Note that an inflection point is a point P and is therefore reported as (c, f(c)).

Example 4-13

For our function y = x3 the point (0, 0) is an inflection point as the function is continuous there
and the concavity changes.

Example 4-14

For the graphically defined function:

1

2

3

4

5

6

y

−4 −3 −2 −1 1 2 3 4 5 6 7 8 x

f(x)

Find intervals where the function is increasing, decreasing, concave upward, and downward. Identify
any inflection points.
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Example 4-15

Find the intercepts, relative maxima and minima, intervals of increase and decrease, intervals of
concave upward and downward, and inflection points of the following functions. Then sketch their
graphs.

1. f(x) = x4 − 6x2

2. f(x) = x− 3x
1
3

3. f(x) = y = 3 sinx− sin3 x on [0, 2π]

Example 4-16

Sketch the graph of a function satisfying all of the following:

• f(0) = 0

• f ′(1) = f ′(3) = f ′(5) = 0

• f ′(x) > 0 if 0 < x < 1 or 3 < x < 5

• f ′(x) < 0 if 1 < x < 3 or x > 5

• f ′′(x) > 0 if 2 < x < 4

• f ′′(x) < 0 if 0 < x < 2 or x > 4

• f(−x) = −f(x)

The second derivative can also be used to evaluate whether critical numbers are the locations of relative
extrema and, if so, whether they are maxima or minima:

Second Derivative Test for a Relative Extremum
Suppose f ′′ is continuous on an open interval that contains c and that f ′(c) = 0.

1. If f ′′(c) < 0, then f has a relative maximum at c .

2. If f ′′(c) > 0, then f has a relative minimum at c .

3. If f ′′(c) = 0, then the test is inconclusive.

This result follows from the fact that a negative second derivative at c means the graph of the function
is concave downward (/) at that value (and hence will have a relative maximum), while a positive
second derivative means the graph of the function is concave upward (,) at that value (and hence
will have a relative minimum).
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Example 4-17

• y = x2 has f ′(0) = 0 and f ′′(0) = 2. Since f ′′(0) is greater than zero the function is concave
upward at x = 0 and hence has a relative minimum at that critical number.

• y = x3 has f ′(0) = 0. However f ′′(0) = 0 as well so the Second Derivative Test is inconclusive.
We need to use a different test (First Derivative Test) to determine that no extrema occurs
at 0.

• y = x4 has f ′(0) = 0 and f ′′(0) = 0 so the Second Derivative Test is also inconclusive here.
However in this case the First Derivative Test confirms a relative minimum occurs at 0.

Example 4-18

Find the relative maxima and minima (and their locations) of

1. f(x) = x3 − 2x2 + x

2. B(x) = 3x
2
3 − x

Use the Second Derivative Test where possible.

Answers:
Page 184

Exercise 4-4

1-2: Show that the following functions have no inflection points:

1. f(x) = 2x4

2. f(x) =
1

x

3. Find the relative extrema (and their locations), the intervals of concavity, and the inflection
points of the function f(x) = x5 − 15x3 + 1 .

4-5: Determine the relative maxima and minima of the following functions and their locations.
Use the Second Derivative Test.

4. f(x) = x3 − 12x+ 1

5. f(x) = cos(2x)− 4 sin(x) on the interval (−π, π)

6. Can you use the Second Derivative Test to categorize the critical number x = 0 of the
function f(x) = sin4 x ? Explain why or why not.

7-9: Find the domain, intercepts, intervals of increase and decrease, relative maxima and minima,
intervals of concave upward and downward, and inflection points of the given functions and
then sketch their graphs.

7. f(x) = x3 − 6x2 8. g(t) = t
3
2 − 3t

1
2 9. F (x) =

√
x2 + 9
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4.5 Limits at Infinity and Horizontal Asymptotes

We have seen how y-values of y = f(x) may approach infinity at a vertical asymptote. We now consider
the behaviour of a function as x approaches infinity.

y

x

L = 3

L = −1
y = f(x)

Definition: If the values of f(x) can be made arbitrarily close to the value L as x is made sufficiently
large then we write:3

lim
x→∞

f(x) = L .

Definition: If the values of f(x) can be made arbitrarily close to the value L as x is made sufficiently
large negatively then we write:

lim
x→−∞

f(x) = L .

Example 4-19

For the above graphically defined example one has:

lim
x→∞

f(x) = −1

and
lim

x→−∞
f(x) = 3

3A rigorous definition of this limit can be made as follows. Suppose function f is defined on some interval (a,∞).
Then lim

x→∞
f(x) = L if and only if for any ε > 0 there exists c ∈ (a,∞) such that |f(x) − L| < ε whenever x > c . A

similar definition lim
x→−∞

f(x) = L may also be formulated.
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The following theorem, in conjunction with our other limit theorems, allows us to evaluate many limits
as x→∞ or −∞.

Theorem 4-8: Let r > 0 be a rational number. Then

• lim
x→∞

1

xr
= 0

• lim
x→−∞

1

xr
= 0

In the second case (x→ −∞), r must be such that xr is defined.4

When one tries to evaluate limits where the magnitude of x approaches infinity, direct substitution of

“x = ∞” may lead to the indeterminate form
∞
∞

. As a general strategy one divides the numerator

and denominator in an expression by the highest power term found in either to evaluate the limit.

Example 4-20

Evaluate the following:

1. lim
x→∞

2x2 − 5x+ 7

7x2 + 3x+ 2

2. lim
x→∞

x3 − 1

x4 + 1

3. lim
x→∞

x5 + 3x+ 5

x2 − 2x+ 1

4. lim
x→−∞

x3 + 5x+ 1

2x3 − 4x2 + 3

5. lim
x→∞

√
x2 + 3

x+ 2

6. lim
x→−∞

√
x2 + 1

x− 3

7. lim
x→∞

(√
x2 + 3x+ 1− x

)
8. lim

x→∞

(
x−

√
4x2 + 5x− 3

)

Horizontal Asymptotes

Recall that a vertical line x = a is called a vertical asymptote of the curve y = f(x) if at least one
of the following statements is true:

lim
x→a

f(x) = ±∞ lim
x→a+

f(x) = ±∞ lim
x→a−

f(x) = ±∞

4We note in passing that the theorem is also valid for 0 < r < 1, not just r ≥ 1. So, for instance, lim
x→∞

1

x1/2
=

lim
x→∞

1
√
x

= 0 despite the fact that for large x,
√
x < x. The point is that

√
x increases without bound as x does so the

limit vanishes.
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Definition: The horizontal line y = L is called a horizontal asymptote of the curve y = f(x) if
either of the following statements is true:

lim
x→∞

f(x) = L lim
x→−∞

f(x) = L

The following function has horizontal asymptotes y = −1 and y = 1.

y

x

y = 3

y = −1
y = f(x)

Example 4-21

In the above graphically defined example the horizontal asymptotes are the lines y = −1 and y = 3.

Example 4-22

Find the horizontal and vertical asymptotes of the following functions.

1. y =
x+ 3

x2 − 9

2. f(x) =

√
4x2 + 1

x+ 1
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Answers:
Page 185

Exercise 4-5

1-13: Determine the following limits. For any limit that does not exist, identify if it has an infinite
trend (∞ or −∞).

1. lim
x→−∞

18x2 − 3x

3x5 − 3x2 + 2

2. lim
x→∞

x2√
x3 + 2

3. lim
x→−∞

√
x2 + 2x

6x+ 3

4. lim
x→∞

[
sec

(
1

x

)
+ 1

]
5. lim

x→−∞

√
x2 + 3x+ 5 + x

6. lim
x→∞

x2 + 5x+ 4

3x2 + 2

7. lim
x→∞

4x5 − 3x2 + 6

x4 + 7

8. lim
x→∞

3x4 + 6x− 7

x5 + 10

9. lim
x→∞

√
x2 + 10

x+ 3

10. lim
x→−∞

√
2x2 + 3

x− 2

11. lim
x→−∞

5x+
√
x2 + 1

x+ 5

12. lim
x→∞

(√
x2 + 4x+ 1− x

)
13. lim

x→−∞

(
x+

√
x2 − 6x+ 5

)

14-21: Find the horizontal asymptotes of the following functions.

14. f(x) =
3x+ 3

2x− 4

15. f(x) = x3 + 5x+ 2

16. g(t) =

√
t2 + 3

t− 2

17. f(x) =
x2 − 2x+ 1

2x2 − 2x− 12

18. f(x) =
cosx

x

19. y =
5x2 − 3x+ 1

x2 − 16

20. f(x) =
x3 + 1

x3 + x2

21. F (x) =
x√

4x2 + 1
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4.6 Slant Asymptotes

A function has a slant asymptote if it approaches an oblique (slanted) line as x approaches infinity
as shown in the following graph.

y

x

y = f(x)

y = mx+ b

A slant asymptote will occur if

lim
x→∞

[f(x)− (mx+ b)] = 0 or lim
x→−∞

[f(x)− (mx+ b)] = 0

for some constants m, and b, the slope and y-intercept of the asymptote, respectively. The equation
of the slant asymptote is therefore:

y = mx+ b .

A rational function f(x) = P (x)/Q(x) will have a slant asymptote if the degree of the numerator P (x)
is one more than the denominator Q(x). In this case use long division to find the equation of the slant
asymptote. While a function may have a different slant asymptote as x → ∞ and x → −∞, for the
rational functions under consideration here these will be the same.

Example 4-23

Find the slant asymptotes of the following:

1. f(x) =
x3

x2 + 2

2. y =
6x4 + 5

2x3 − 4

3. y =
2x4 − x3 + x− 3

x3 − 2
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Answers:
Page 186

Exercise 4-6

1-3: Find any slant asymptotes of the graphs of the following functions.

1. f(x) =
3x2 − 4x

x+ 2

2. g(x) =
x3 + 2x+ 1

x4 + 5x− 7

3. y =
x3 − 2x2 + 1

x2 + 2
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4.7 Curve Sketching

We have now developed many tools to analyze a function that enable us to accurately sketch a curve.

Sketching the Graph of y = f(x)

Domain: Determine D, the set of x-values for which the function is defined.

Intercepts: The y-intercept is y = f(0) while the x-intercepts are x = c where c are the solutions
of f(c) = 0.

Symmetry: Is the function even, f(−x) = f(x), odd, f(−x) = −f(x), or periodic, f(x + p) =
f(x)?

Asymptotes: Find any vertical

(
x = a where lim

x→a(±)
f(x) = ±∞

)
,

horizontal

(
y = L where lim

x→±∞
f(x) = L

)
,

or slant

(
y = mx+ b where lim

x→±∞
[f(x)− (mx+ b)] = 0

)
asymptotes.

Intervals: Partition D into open intervals using locations of any vertical asymptotes, critical
numbers (c in D where f ′(c) = 0 or does not exist), and numbers c in D where f ′′(c) = 0 or
does not exist.

Increasing/Decreasing: Use increasing/decreasing test to determine intervals of increase
(f ′(x) > 0) or decrease (f ′(x) < 0).

Relative Extrema: For any critical numbers determine relative extrema. Evaluate them using
the First Derivative Test (f ′ goes from negative to positive at c⇒ relative minimum, positive
to negative ⇒ relative maximum, no change ⇒ no extremum) or Second Derivative Test
(f ′′(c) > 0⇒ relative minimum, f ′′(c) < 0⇒ relative maximum, f ′′(c) = 0⇒ inconclusive).
Evaluate f(c) to find the value of any relative extrema.

Concavity: Use the concavity test (f ′′(x) > 0 ⇒ concave upward, f ′′(x) < 0 ⇒ concave down-
ward) to find intervals of concavity.

Inflection Points: Consider x-values c where f ′′(c) = 0 or does not exist but f is continuous.
Inflection points (c, f(c)) occur where concavity changes (positive to negative or vice versa).

Sketch: Sketch the above information on a graph choosing axis limits that will include the inter-
esting regions of the graph.

Example 4-24

Sketch the graph of f(x) =
2x2 + 2x− 3

x2 + x− 2
.
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Answers:
Page 186

Exercise 4-7

1-3: Apply calculus techniques to identify all important features of the graph of each function
and then sketch it.

1. f(x) = x3 − 3x− 2

2. y =
3x2

x2 − 1

3. f(x) =
x2

x2 + 2x+ 1
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4.8 Optimization

A particularly useful application of calculus is optimization. We have already seen how we can find
absolute and relative extrema of functions. When these functions represent physical quantities solutions
of extrema problems give optimal settings of the independent variable that will result in the lowest or
highest possible value of the dependent variable.

So in business one may be interested in minimizing cost or maximizing profit by setting selecting the
value of a design specification in its production or determining the sale price of an item. Environmen-
tally one may be interested in minimizing the production of some toxic compound whose formation
depends on an alterable temperature at production. Often we are interested in minimizing distance or
time.

As with any word problem, the challenge with an optimization problem is to convert this into a calculus
problem. Once this is accomplished one follows the steps already discussed for finding the absolute
extremum of interest. In summary do the following:

Optimization Problem Steps

1) Identify Variables: Identify the dependent variable to be maximized or minimized and the
independent variable to be varied. (If the problem is geometrical in nature try sketching a
diagram.) Determine the physically valid domain D of the independent variable.

2) Determine Function: Write the dependent variable as a function of the independent vari-
able. (If another variable appears in the function, try to find a constraint involving the
independent variable and it so that the latter may be removed from the function.5)

3) Differentiate: Take the derivative of the dependent variable with respect to the independent
one.

4) Critical Numbers: Find any critical numbers of the independent variable (where the deriva-
tive vanishes or does not exist).

5) Evaluate Dependent Variable: If seeking an absolute maximum, check which critical num-
bers are relative maxima (using the Second or First Derivative Test) and evaluate the de-
pendent variable at those points. Also evaluate the dependent variable at the endpoints of
D. The largest of these is the absolute maximum of the dependent variable while its loca-
tion is the optimal setting of the independent variable. Do similarly if seeking an absolute
minimum.6

Example 4-25

Solve the following optimization problems.

1. A farmer intends to put a rectangular garden along one side of a barn. The remaining three
sides of the garden will be fenced. Find the dimensions and area of the largest garden that
can be enclosed using 40 metres of fencing material.

2. Find the dimensions of the rectangle with fixed area a having the smallest perimeter possible.

5If no such constraint exists so that the other variable is actually independent, then multivariate calculus would be
required.

6As a final step, note that plotting your function to confirm the location and value of the extremum is a good idea
in practice.
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3. A polygonal window is composed of a rectangle topped with an equilateral triangle. Find the
dimensions of the window that will maximize the area if the perimeter of the window must
be 6 m.

4. In a certain type of cheese production the cheese is pressed into a cylindrical mold with a
circular base and no top. If the total area of the mold is to be 1600 cm2, find the radius and
height of the mold that will maximize the volume it contains.

5. A plastic rectangular box for transporting vegetables needs to be designed to have a volume of
72000 cm3. The box is to have an open top. The cost of material for the base is 0.25 cents/cm2

while for the sides it is only 0.2 cents/cm2. If the length of the base is desired to be 1.5 times
its width, find the dimensions and cost for the least expensive box meeting these requirements.

6. A page in a children’s book is to have a total area of 600 cm2. Its top and bottom margins
are to be 3 cm while its side margins are to be 2 cm each. What should the dimensions of the
page be to maximize the printed area between the margins?

7. Earth is located at the fixed point (1, 0) in a coordinate system superimposed on the plane
of the solar system with the sun at the origin. Here measurements are in Astronomical
Units (AU).7 A spaceship follows a hyperbolic trajectory y =

√
x2 + 1 through the plane. At

what point is the spaceship closest to Earth and how far away is it at that point?

8. A semicircle has a radius of 2 cm. What are the dimensions of the rectangle with largest area
that can be inscribed within it?

Answers:
Page 187

Exercise 4-8

1-10: Solve the following optimization problems following the steps outlined in the text.

1. The entrance to a tent is in the shape of an isosceles triangle as shown below . Zippers run
vertically along the middle of the triangle and horizontally along the bottom of it. If the
designers of the tent want to have a total zipper length of 5 metres, find the dimensions of
the tent that will maximize the area of the entrance. Also find this maximum area.
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2. Find the point on the line y = 2x+ 2 closest to the point (3, 2) by

(a) Using optimization.

(b) Finding the intersection of the original line and a line perpendicular to it that goes
through (3, 2) .

3. The product of two positive numbers is 50. Find the two numbers so that the sum of the
first number and two times the second number is as small as possible.

7One Astronomical Unit equals the average distance from the earth to the sun, approximately 150 million kilometres.
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4. A metal cylindrical can is to be constructed to hold 10 cm3 of liquid. What is the height
and the radius of the can that minimize the amount of material needed?

5. A pair of campers wish to travel from their campsite along the river (location A) to visit
friends 10 km downstream staying in a cabin that is 2 km from the river (location B) as
shown in the following diagram:

2 km

10 km

x
A

B

(a) If the pair can travel at 8 km/h in the river downstream by canoe and 1 km/h carrying
their canoe by land, at what distance x (see diagram) should they depart from the river
to minimize the total time t it takes for their trip?

(b) On the way back from the cabin they can only travel at 4 km/h in their canoe because
they are travelling upstream. What distance x will minimize their travel time in this
direction?

(c) Using the symbolic constants a for the downstream distance, b for the perpendicular
land distance, w for the water speed and v for the land speed, find a general expression
for optimal distance x. Verify your results for parts (a) and (b) of this problem by
substituting the appropriate constant values.

(d) Does your general result from part (c) depend at all on the downstream distance a?
Discuss.

6. A construction company desires to build an apartment building in the shape of a rectangular
parallelpiped (shown) with fixed volume of 32000 m3. The building is to have a square base.
In order to minimise heat loss, the total above ground surface area (the area of the four sides
and the roof) is to be minimised. Find the optimal dimensions (base length and height) of
the building.

h

xx

7. A rectangular field is to be enclosed and then divided into three equal parts using 32 metres
of fencing. What are the dimensions of the field that maximize the total area?
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8. Two power transmission lines travel in a parallel direction (north-south) 10 km apart. Each
produces electromagnetic interference (EMI) with the one to the west producing twice the
EMI of that of the one to the east due to the greater current the former carries. An amateur
radio astronomer wishes to set up his telescope between the two power lines in such a way
that the total electromagnetic interference at the location of the telescope is minimized. If
the intensity of the interference from each line falls off as 1/distance, how far should the
telescope be positioned from the stronger transmission line?

9. An athletic field consists of a rectangular region with a semicircular region at each end.
The perimeter of the entire athletic field has to be 400 metres. Find the dimensions that
maximize the area of the rectangular region.

y

x

10. An antenna is to be created by bending a wire of length 16 cm into the shape of a sector of
a circle as shown. In order to maximize the electric flux through the wire, the area of the
sector is to be maximized. Find the dimensions r and θ that will maximize the area. Also
find the maximum area.

θ

r



Derivative Applications 115

Answers:
Page 188

Chapter 4 Review Exercises

1-3: Find the critical numbers of the given functions.

1. f(x) =
x+ 2

x2 − 3

2. g(t) =
√
t2 − 3t

3. F (θ) = cos(2θ) + 2 sin θ

4-5: Find the absolute maximum and absolute minimum values and their locations for the given
function on the closed interval.

4. f(x) =
x

x2 + 16
on the closed interval [−1, 1].

5. g(t) = t
√

8− t2 on the closed interval [0, 1].

6-7: Find the domain, intercepts, asymptotes, relative maxima and minima, intervals of increase
and decrease, intervals of concave upward and downward, and inflections points. Then sketch
the graph of the given functions.

6. f(x) = 8x
1
3 + x

4
3

7. g(x) =
x2

x− 2

8-11: Evaluate the given limits.

8. lim
x→∞

3x2 − 4x− 5

2x5 + 3

9. lim
x→−∞

5x4 − 3x+ 1

x4 + 7

10. lim
x→−∞

√
5x2 − 4

2x+ 1

11. lim
x→−∞

(
2x+

√
x2 + 4x+ 2

)

12-13: Find the horizontal and vertical asymptotes of the given functions.

12. y =
2x2 + 7x+ 3

x2 + x− 6

13. g(t) =

√
9 + 4t2

2t+ 3
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14. A store with a rectangular floorplan is to sit in the middle of one side of a larger rectangular
lot with parking on three sides as shown.

10 m 10 m

18 m

If the narrow strips of parking on the side are to be 10 m wide while the parking in the front
is to be 18 m wide, find the optimal dimensions of the store that will minimize the total lot
area if the store itself must have an area of 1000 m2. What is the total lot area in this case?

15. A farmer wants to enclose a rectangular garden on one side by a brick wall costing $20/m
and on the other three sides by a metal fence costing $5/m. Find the dimensions of the
garden that minimize the cost if the area of the garden is 250 m2.

16. A window shaped like a Roman arch consists of a rectangle surmounted by a semicircle. Find
the dimensions of the window that will allow the maximum amount of light if the perimeter
of the window is 10 m.
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5.1 Antiderivatives

We know how to take a derivative of a function. If we reverse the procedure and ask which function
when differentiated results in a given function we are finding an antiderivative.

Definition: If F ′(x) = f(x) for all x in an interval I then the function F is called an antiderivative
of f on I.

Example 5-1

1. F (x) =
1

3
x3 is an antiderivative of f(x) = x2 because F ′(x) =

d

dx

1

3
x3 = x2 = f(x) .

2. F (x) =
1

3
x3 + 10 is also an antiderivative of f(x) = x2 because

d

dx

(
1

3
x3 + 10

)
= x2 .

3. F (x) =
1

4
x4 + 2x is an antiderivative of f(x) = x3 + 2 since F ′(x) = x3 + 2 .

The first two questions of the last example illustrate the following theorem:

Theorem 5-1: Let C be an arbitrary constant. If F is an antiderivative of f on an interval I then
F (x) + C is also an antiderivative of f on I. Moreover, all antiderivatives of f on I have this form.

That F (x)+C is also an antiderivative given F (x) an antiderivative is due to
d

dx
C = 0 . Proof that all

antiderivatives can be written F (x) +C follows from Theorem 4-7 . As such the general antiderivative
of a function f is a family of curves F (x) + C .

Consideration of our derivative formulae results in the following table of antiderivatives (up to the
additive constant C). Differentiate each answer on the right to confirm the result.

Function Antiderivative

xn 1
n+1x

n+1 where n 6= −1

cosx sinx
sinx − cosx
sec2 x tanx

secx tanx secx
cf(x) cF (x)

f(x) + g(x) F (x) +G(x)

For the last two general formulae we are assuming F and G are antiderivatives of f and g respectively
and that c is an arbitrary constant. These last two general formulae show that finding an antiderivative
is a linear operation. When finding antiderivatives of a sum of terms we can focus on each term
separately and pull any constant multipliers out front.

Example 5-2

Find the antiderivatives of:

1. f(x) = x3 + 2 cosx

2. f(x) = sinx+ tanx secx

3. f(x) =
(√
x+ x

)2
4. f(x) =

2− 3 sinx

cos2 x

5. f(x) =
(x− 1)2

x4
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Note that a function f is an antiderivative of its own derivative f ′. Similarly, since f ′′ is the derivative
of f ′, f ′ is an antiderivative of f ′′.

Example 5-3

Find all functions g such that g′(x) = 4 sinx− 3x5 + 6 4
√
x .

Example 5-4

If f ′′(x) = 2 +
4

x3
, f(1) = 0, and f(2) = 3, find f(x) .

Example 5-5

An object with mass 2 kg moving in a straight line feels a force (in Newtons) given by
F (t) = 12t+ 16 N . If its initial displacement is s(0) = 3 m and its initial velocity is v(0) = −2 m/s,
find its position function s(t) . (Note that according to Newton’s 2nd Law of Motion F = ma.)

It will be shown that antidifferentiation is intimately connected with the calculus concept of integration
to which we presently turn.

Answers:
Page 189

Exercise 5-1

1. Why are F1(x) =
1

4
x4 and F2(x) =

1

4
(x4 + 2) both antiderivatives of f(x) = x3 ?

2-6: Find the antiderivative of the given functions.

2. f(x) = 3x2 − 5x+ 6

3. f(x) =
x3 + 4

x2

4. g(t) =
√
t+

2√
t

5. h(x) =
3
√
x2 − 4x6 + π

6. f(θ) = 2 cos θ − sin θ + sec2 θ

7-9: Find the function(s) f satisfying the following.

7. f ′′(x) = 2x3 − 10x+ 3

8. f ′′(t) =
√
t +6t, f(1) = 1, f ′(1) = 2

9. f ′′(θ) = 3 sin θ + cos θ + 5, f(0) = 3, f ′(0) = −1

10. Suppose f is a function with f ′′′(x) = 0 for all x. Show that f has no points of inflection.
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5.2 Series

Definition: A sequence is an ordered list of numbers (called terms).

Example 5-6

• 1, 4, 9, 16, 25, . . . , 100

•
1

2
,

1

4
,

1

8
,

1

16
, . . .

As the examples show a sequence may have a finite or infinite number of terms.

A similar concept to a sequence is a series.

Definition: A series is a sum of terms in a sequence.

Example 5-7

• 1 + 4 + 9 + 16 + 25 + . . .+ 100 (a finite series)

•
1

2
+

1

4
+

1

8
+

1

16
+ . . . (an infinite series)

Sigma Notation

When a pattern exists in the terms of a series it can be abbreviated by writing the term as a function
of an index.

Example 5-8

In our first series one notices:

12 + 22 + 32 + 42 + . . .+ 102 =

10∑
i=1

i2

Here the symbol
∑

is sigma, the Greek capital S, representing a sum. The i is the index, related to
the position in the series. The limits of 1 and 10 indicate the set of values i ranges over (1, 2, . . . , 10).
Just as the x when writing f(x) is arbitrary (f(u) = u2 is the same function as f(x) = x2), we could
have written the series as:

10∑
j=1

j2
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In general we have the following:

Definition: Let am, am+1, . . . , an be a sequence of real numbers (so m, n are integers with m ≤ n)
then

n∑
i=m

ai = am + am+1 + . . .+ an−1 + an

is the sigma notation for the series. Here i is called the index of the summation. Often we
can write the term ai as a function of the index, ai = f(i) .

Example 5-9

Write the following in sigma notation:

1.
1

2
+

1

4
+

1

8
+

1

16
+ . . .+

1

256

2.
1

2
+

1

4
+

1

8
+

1

16
+ . . .

3. 23 + 33 + . . .+ n3

Since a series is just a sum, often the goal is to evaluate it.

Example 5-10

Evaluate the following series:

1.

5∑
j=0

2j

2.

3∑
i=1

i− 1

i2 + 3

Theorem 5-2: The following sums can be evaluated once and for all for positive integer n:

1.

n∑
i=1

1 = n

2.

n∑
i=1

i =
n(n+ 1)

2
=
n2 + n

2

3.

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
=

2n3 + 3n2 + n

6

4.

n∑
i=1

i3 =

[
n(n+ 1)

2

]2

=
n4 + 2n3 + n2

4

5.

n∑
i=1

i4 =
n(n+ 1)(2n+ 1)(3n2 + 3n− 1)

30
=

6n5 + 15n4 + 10n3 − n
30
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For general sums we have the following theorem:

Theorem 5-3: If c is any constant (i.e. independent of i) and

n∑
i=m

ai and

n∑
i=m

bi are arbitrary sums

(with the same range of indices) then

1.

n∑
i=m

cai = c

n∑
i=m

ai

2.

n∑
i=m

(ai ± bi) =

n∑
i=m

ai ±
n∑

i=m

bi

The theorem shows summation is a linear process like differentiation and antidifferentiation.

Example 5-11

The following useful result is a consequence of the previous theorems:

n∑
i=1

c = nc ,

since

n∑
i=1

c =

n∑
i=1

c · 1 = c

n∑
i=1

1 = cn .

More complicated series can be evaluated using the previous results.

Example 5-12

Evaluate the following using the previous theorems.

1.

n∑
i=1

(3 + 2i)2
2.

n∑
i=1

1

n

[(
i

n

)3

+ 2

]

Sometimes we will want to take the limit of a series as n→∞. Though technically n is only allowed
to take integer values, we evaluate the limit in the same way we do when x → ∞ for a real variable
getting arbitrarily large.

Example 5-13

Evaluate the following limits:

1. lim
n→∞

n∑
i=1

1

n

[(
i

n

)3

+ 2

]

2. lim
n→∞

n∑
i=1

1

n

(
i

n

)4

3. lim
n→∞

n∑
i=1

1

n

(
1 +

2

n
i+

3

n2
i2
)

Note in the above limits we cannot simply write

∞∑
i=1

because the index upper limit n actually appears

in the terms themselves!
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Answers:
Page 189

Exercise 5-2

1-4: Evaluate the following series. (Any value that is not an index being summed over should be
treated as a postive integer constant.)

1.

5∑
i=2

i+ 2

i− 1

2.

4∑
k=1

6k

3.

n∑
i=1

i2 + 1

n3

4.

n∑
i=1

i(i− 3)
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5.3 Area Under a Curve

We know how to find the areas of simple shapes like the rectangle and triangle shown below:

b b

A = bh h h

A = 1
2bh

More complicated polygons with straight edges could be subdivided into triangles to find their areas.

An area bounded by a smooth curve can be resolved using a limiting approach. Consider the general
problem of finding the area S of the region that lies under the curve y = f(x) between x = a and
x = b. By under the curve we mean the area between the curve and the x-axis. The situation is
illustrated in the following diagram:

y

x
a b

S

y = f(x)

We are going to approximate the area S with the sum of the areas of n thin rectangles. Letting the
number of rectangles increase without bound (n → ∞) will give us an exact result. For a concrete
example consider finding the area under the curve y = x3 from x = 0 to x = 1 shown below.

y

x
0 1

S

y = x3
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Consider dividing the interval [0, 1] into 4 equal subintervals each of length ∆x = 1/4. The rectangles
have bases that are these subintervals and their heights have been chosen to have the values of the
function at the right endpoints of the subintervals. Diagrammatically they are as follows:

y

x0 1
4

2
4

3
4

1

Let S4 be the sum of the areas of the rectangles. Then an approximation of the desired area is

S4 = A1 +A2 +A3 +A4 =
1

4

(
1

4

)3

+
1

4

(
2

4

)3

+
1

4

(
3

4

)3

+
1

4

(
4

4

)3

=

(
1

4

)(
100

64

)
=

25

64
≈ 0.3906 .

Clearly, from the diagram, this will be an overestimate of the area S. If we had, instead used left
endpoints for the heights we would have underestimated S:

y

x0 1
4

2
4

3
4

1
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To get a more precise estimate divide [0, 1] into 8 subintervals of length ∆x = 1/8 and let S8 be the
sum of their areas, once again using the function evaluated at the right endpoints for the rectangle
height:

y

0 1 x

The area estimate of S is

S8 = A1 +A2 + . . .+A8

=
1

8

[(
1

8

)3

+

(
2

8

)3

+

(
3

8

)3

+

(
4

8

)3

+

(
5

8

)3

+

(
6

8

)3

+

(
7

8

)3

+

(
8

8

)3
]

=

(
1

8

)(
1296

4096

)
=

81

256
≈ 0.3164

Once again this will be an overestimate of S but we expect, based on the graph, that it has less error.

Let us find Sn for any number of intervals n. Divide the interval [0, 1] into n equal subintervals of
length ∆x = 1/n. That is [0, 1/n], [1/n, 2/n],. . . ,[n−1

n , 1]. Then

Sn = A1 +A2 + . . .+An

=
1

n

[(
1

n

)3

+

(
2

n

)3

+ . . .+
(n
n

)3
]

=

(
1

n

)(
1

n3

)[
13 + 23 + . . .+ n3

]
=

1

n4

n∑
i=1

i3

=
1

n4

n4 + 2n3 + n2

4

=
n2 + 2n+ 1

4n2

As a check note that if n = 4 we get S4 = 0.3906 and for n = 8, S8 = 0.3164 .
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Now for a larger number of intervals we expect Sn to be a better estimate of S. If we choose n = 16
intervals for instance we have:

y

0 1 x

⇒ S16 =
289

1024
= 0.2822

So let us let the number of intervals go to infinity (n→∞):

lim
n→∞

Sn = lim
n→∞

n2 + 2n+ 1

4n2
=

1

4
= 0.25

As n increases, then Sn becomes a better and better approximation of the area under the curve.
Therefore:

Area = S = lim
n→∞

Sn =
1

4

In general we want to evaluate the area A under the curve y = f(x), f(x) ≥ 0 from x = a to b. To do
so, divide [a, b] into n subintervals of equal width ∆x = b−a

n . Label the endpoints x0 = a, x1, x2, . . . ,
xn−1, xn = b. Let x∗i be any point on the subinterval [xi−1, xi]. The area A of the region is the sum
of the n rectangles as n→∞ (∆x→ 0):

A = lim
n→∞

n∑
i=1

f(x∗i ) ∆x .

Since for a given n the ∆x is constant, it may be pulled outside of the sum and we get:

A = lim
n→∞

b− a
n

n∑
i=1

f(x∗i ) .

The formula can be made more precise by specifying the position of x∗i within the interval:

right endpoint: If x∗i is the right endpoint of the interval [xi−1, xi], then x∗i = a + i
b− a
n

and the

area is given by

A = lim
n→∞

b− a
n

n∑
i=1

f

(
a+ i

b− a
n

)

midpoint: If x∗i is the midpoint of the interval [xi−1, xi], then x∗i = a+

(
i− 1

2

)
b− a
n

and the area

is given by

A = lim
n→∞

b− a
n

n∑
i=1

f

(
a+

(
i− 1

2

)
b− a
n

)
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left endpoint: If x∗i is the left endpoint of the interval [xi−1, xi], then x∗i = a+ (i− 1)
b− a
n

and the

area is given by

A = lim
n→∞

b− a
n

n∑
i=1

f

(
a+ (i− 1)

b− a
n

)
Example 5-14

1. Find the area under the curve y = x2 + 2 from a = 1 to b = 4. Take x∗i to be the right
endpoint of the ith interval.

2. Find the area under the curve y = x2 + 3x − 2 from a = 1 to b = 4. Take x∗i to be the left
endpoint of the ith interval.

We are assuming that there is no difference in the results of these area formulae, despite the evaluation
at different x∗i . It remains to consider what properties the function must have for this to be true.

Answers:
Page 190

Exercise 5-3

1. Let A be the area of the region R bounded by the x-axis, the lines x = 1 and x = 4, and
the curve f(x) = 2x2 − x+ 2 shown below:

0 1 2 3 4 5 x
0

10

20

30

40

y

R

(a) Write a formula for the nth sum Sn approximating A using right endpoints of the
approximating rectangles.

(b) Use A = lim
n→∞

Sn and your answer from (a) to calculate A.
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5.4 The Definite Integral

Our consideration of the evaluation of the area under a curve leads us to define the definite integral.

Definition: Let f be a function defined on the interval [a, b]. Divide [a, b] into n equal subintervals
of width ∆x = b−a

n with endpoints x0 = a, x1, x2, . . . , xn−1, xn = b. Let x∗i denote any point
in the ith interval [xi−1, xi]. The definite integral of f from a to b is:∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(x∗i )∆x

if the limit exists and is independent of the choice of the x∗i . If the limit exists, then f is said to
be integrable on the interval [a, b].

We introduce the following terminology for the parts of the definite integral:

•
∫

is the integral sign. It is a script S suggesting summation.

• f(x) is the integrand.

• x is the variable of integration.1

• dx is the differential.

• b is the upper limit of integration.

• a is the lower limit of integration.

• The series

n∑
i=1

f(x∗i )∆x is a Riemann sum.

If f(x) ≥ 0 for all x in [a, b], then
∫ b
a
f(x) dx is the area under the curve y = f(x) and above the

x-axis from x = a to x = b as we have already seen. For arbitrary f , the geometrical meaning of∫ b
a
f(x) dx is the net signed area between the curve and the x-axis on interval [a, b] with areas above

the x-axis (where f(x) > 0) counted positively and areas below the x-axis (where f(x) < 0) counted
negatively.

y

xa b

∫ b

a

f(x) dx = A1 − A2 + A3

y = f(x)

A1

A2

A3

1The choice of integration variable, just as the choice of summation index, is arbitrary, i.e.∫ b

a
f(x) dx =

∫ b

a
f(y) dy =

∫ b

a
f(t) dt .
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The definite integral, representing a physical area, is therefore just a number.2

If the upper limit b is less than the lower limit a we can define, assuming f is integrable on [b, a], that∫ b

a

f(x) dx = −
∫ a

b

f(x) dx .

This definition is consistent with the Riemann sum in the original definition since if b < a there, ∆x
would be negative. In practice, it is important to remember that if one exchanges limits one must
introduce a minus sign.

The following theorem gives a sufficient condition for a function f to be integrable on interval [a, b].

Theorem 5-4: If f is continuous on [a, b] then
∫ b
a
f(x) dx exists.

In fact the weaker condition that f be piecewise continuous on [a, b] is sufficient.3

The next theorem lists several general properties of the definite integral. While they may be rigorously
proven by considering Riemann sums, consideration of their graphical meaning in terms of areas makes
them intuitively reasonable.

Theorem 5-5: Let f and g be integrable functions on the given intervals of integration and a, b, c,
m and M constants, then the following are true for definite integrals:

1.

∫ a

a

f(x) dx = 0

2.

∫ b

a

c dx = c(b− a)

3.

∫ b

a

[f(x)± g(x)] dx =

∫ b

a

f(x) dx±
∫ b

a

g(x) dx

4.

∫ b

a

cf(x) dx = c

∫ b

a

f(x) dx

5.

∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx

6. If f(x) ≥ 0 for all x in [a, b] then

∫ b

a

f(x) dx ≥ 0 .

7. If f(x) ≥ g(x) for all x in [a, b] then

∫ b

a

f(x) dx ≥
∫ b

a

g(x) dx .

8. If m ≤ f(x) ≤M for all x in [a, b] then m(b− a) ≤
∫ b

a

f(x) dx ≤M(b− a) .

9.

∣∣∣∣∣
∫ b

a

f(x) dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)| dx

2Assuming there are no variables in the limits of integration or non-integration variables in the integrand.
3Piecewise continuous means function f is continuous everywhere except at a finite number of removable or jump

discontinuities. Vertical asymptotes (infinite discontinuities) are not allowed.
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Example 5-15

Evaluate or simplify the following:

1.

∫ 2

−1

x dx

2.

∫ 4

9

√
t dt if

∫ 9

4

√
x dx =

38

3
.

3.

∫ 4

3

f(x) dx+

∫ 3

1

f(x) dx+

∫ 1

4

f(x) dx

4.

∫ 3

1

f(x) dx+

∫ 6

3

f(x) dx+

∫ 12

6

f(x) dx

If a function is integrable we are free to choose the points of evaluation, x∗i , when evaluating the
Riemann sum to be the right endpoints of the intervals.

Theorem 5-6: If f is integrable on [a, b] then∫ b

a

f(x) dx = lim
n→∞

b− a
n

n∑
i=1

f

(
a+ i

b− a
n

)

Note that similar theorems can be given for the left endpoint and midpoint choices of x∗i as previously
discussed.

Example 5-16

Evaluate the following definite integrals using a Riemann sum with the function evaluated at the
right endpoints of the intervals:

1.

∫ 3

0

(
x3 − 5x

)
dx

2.

∫ 5

1

(
2 + 3x− x2

)
dx



132 5.4 The Definite Integral

Answers:
Page 190

Exercise 5-4

1. Consider the following graphically defined function f(x):

−4

−3

−2

−1

1

2

3

y

−6 −5 −4 −3 −2 −1 1 2 3 4 5 x

f(x)

(a) Using the interpretation of the definite integral in terms of net signed area between the
function and the x-axis, find

i.

∫ 0

−5

f(x) dx

ii.

∫ 5

−2

f(x) dx

(b) If we define the function g(t) =

∫ t

−6

f(x) dx, on what intervals is

i. g(t) increasing?

ii. g(t) decreasing?

2-5: Use the interpretation of the definite integral as the net signed area to find:

2.

∫ 2

0

3x dx

3.

∫ 4

−1

6 dx

4.

∫ 3

0

(2x− 4) dx

5.

∫ 3

−4

(−x) dx

6. Find

∫ 0

−r

√
r2 − x2 dx by interpreting the integral as an area. Here r > 0 is a positive

constant.

7. Simplify the following to a single definite integral using the properties of the definite integral.∫ 7

−1

f(x) dx+

∫ −1

3

f(x) dx+

∫ 9

7

f(x) dx

8-9: Use Riemann sums with right endpoint evaluation to evaluate the following definite integrals.

8.

∫ 3

0

(
x3 + 1

)
dx

9.

∫ b

0

x2 dx where b > 0 is constant
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5.5 The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus (FTC) shows integration and differentiation are inverse
processes of each other. We will present two forms of the theorem, one involving derivatives and one
antiderivatives. The latter, as we will see, is particularly useful.

Theorem 5-7: The Fundamental Theorem of Calculus (Derivative Form):

If f is continuous on interval [a, b], then the function g(x) defined for all x in [a, b] by

g(x) =

∫ x

a

f(t) dt ,

is continuous on [a, b] and differentiable on (a, b) with4

g′(x) = f(x) ,

or, equivalently,
d

dx

∫ x

a

f(t) dt = f(x) .

That the result of the theorem is plausible can be seen in the following diagram:

y

xa x x+ ∆x

g(x) =Area

g(x+ ∆x) =Area

y = f(x)

The function g(x) =

∫ x

a

f(t) dt associates with each value x the area under the curve y = f(x) from

the fixed number a up to x. To find the derivative of the function we must evaluate:

g′(x) = lim
∆x→0

g(x+ ∆x)− g(x)

∆x

In the diagram g(x) is the dark grey area, while g(x + ∆x) is all of that area plus the light grey
shaded area. Therefore the difference g(x + ∆x) − g(x) is simply the light grey shaded area itself.
Now for finite ∆x this light grey area is not a rectangle since the left side has height f(x) while the
right side has height f(x+ ∆x) and the top side is the curve y = f(x) over [x, x+ ∆x]. However, due
to the continuity of f , we have lim

∆x→0
f(x + ∆x) = f(x), in other words the light grey area becomes

increasingly like a rectangle of width ∆x and height f(x) as ∆x→ 0. Thus

g(x+ ∆x)− g(x) ≈ f(x)∆x ,

4In fact, g(x) is differentiable on [a, b] (i.e. including the endpoints) if we admit right and left-handed derivatives at
those points. That is, we use the usual derivative formula with limh→ 0+ and limh→ 0− at the endpoints.
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and hence
g(x+ ∆x)− g(x)

∆x
≈ f(x) .

and in the limit we have

g′(x) = lim
∆x→0

g(x+ ∆x)− g(x)

∆x
= f(x)

exactly. A rigorous proof of the theorem can be made using the Extreme Value Theorem, inequalities
of the definite integral, and the Squeeze Theorem.

Example 5-17

Use the derivative form of the Fundamental Theorem of Calculus to find the derivatives of the
following functions:

1. g(x) =

∫ x

−1

√
t3 + 1 dt

2. g(x) =

∫ 4

x

(
2 +
√
u
)8
du

3. h(x) =

∫ √x
1

s2

s2 + 1
ds

4. g(x) =

∫ x2+x

2

√
1 + t3 dt

5. g(x) =

∫ sin x

0

cos θ dθ

6. Si(2x) where Si(x) is the sine integral function Si(x) =

∫ x

0

sin t

t
dt

Answers:
Page 190

Exercise 5-5

1-4: Compute the derivatives of the following functions using the Fundamental Theorem of Cal-
culus.

1. F (x) =

∫ x

0

√
t3 + 2t+ 1 dt

2. h(x) =

∫ x4

0

√
t3 + 2t+ 1 dt

3. g(x) =

∫ 1

x

[
cos
(
t3
)]
dt

4. H(x) =

∫ 3x

2x

3
√
t3 + 1 dt

5. The error function, erf(x), is defined by erf(x) =
2√
π

∫ x

−∞
e−t

2

dt where eu is the natural

exponential function. If f(x) = erf
(
x3
)

find f ′(x) .
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6. The left-side of a symmetrical glacial river valley has an approximate parabolic shape de-
scribed by the curve y = − 1

4x
2 + 1 (in km) as shown.

B

QP (x, y)

A
1

2

y = −1
4x

2 + 1

y

x

s

Using calculus techniques the arc length s from point A at the top of the valley to the point
P (x, y) can be shown to equal

s =

∫ x

0

√
1 +

1

4
t2 dt .

Engineers wish to build a road connecting points A and B with a bridge spanning the valley
at the point P to the corresponding point Q on the opposite side of the valley. If the cost
to build the bridge is 25% more per kilometre than the cost of building the road (i.e. it is
5/4 times as much per km), at what point P (x, y) should they start the bridge to minimize
the total cost? (Hint: Due to the symmetry of the situation just minimize the cost to build
from point A to the middle of the bridge.)

We next turn to the second form of the Fundamental Theorem of Calculus which gives a simple
mechanism to evaluate many definite integrals.

Theorem 5-7: The Fundamental Theorem of Calculus (Antiderivative Form):

If f is continuous on [a, b] and F is any antiderivative of f (so F ′ = f) then

∫ b

a

f(x) dx = F (b)− F (a) .

Note we define the shorthand F (x)|ba to be the right hand side of the equality, F (x)|ba = F (b)− F (a).
Unlike the integral sign, the bar is placed on the right.

Proof of the Antiderivative Form of the FTC follows from the fact that the deriative form of the FTC
shows that g(x) =

∫ x
a
f(t)dt is an antiderivative of f(x), since g′(x) = f(x). By Theorem 5-1, any

other antiderivative F (x) of f(x) differs by at most a constant from g, F (x) = g(x) + C. Hence

F (b)− F (a) = [g(b) + C]− [g(a) + C] = g(b)− g(a) =

∫ b

a

f(t) dt−
∫ a

a

f(t) dt︸ ︷︷ ︸
=0

=

∫ b

a

f(t) dt .
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Example 5-18

Use the antiderivative form of the FTC to evaluate the following definite integrals:

1.

∫ 2

1

x−2 dx

2.

∫ 1

0

(
y9 − 2y5 + 3y

)
dy

3.

∫ π
2

0

(cos θ + 2 sin θ) dθ

4.

∫ 4

1

(
√
x+ 2)

2

√
x

dx

5.

∫ 1

0

1

x3
dx

Answers:
Page 191

Exercise 5-6

1-7: Compute the following definite integrals using the Fundamental Theorem of Calculus.

1.

∫ 3

1

(
x2 + 3

)
dx

2.

∫ 1

4

√
x dx

3.

∫ π
4

−π4
sec2 θ dθ

4.

∫ −1

−2

4

x4
dx

5.

∫ π
2

−π2
(sinx+ x) dx

6.

∫ 2

−3

|x| dx

7.

∫ 1

−1

1

x2
dx
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Indefinite Integrals

Because of the connection between the evaluation of definite integrals with integrand f and the an-
tiderivative of f we define the indefinite integral as follows:

Definition: If F (x) is an antiderivative of f , so F ′(x) = f(x), then the indefinite integral of f(x)
is ∫

f(x) dx = F (x) + C

The advantage of this notation for the antiderivative (rather than, say F (x)) is that
∫
f(x) dx clearly

indicates the function f being antidifferentiated, just as df
dx indicates the function differentiated. Note,

however, the difference between the definite and indefinite integrals. The definite integral
∫ b
a
f(x) dx

is a number while the indefinite integral
∫
f(x) dx is a function.5

For indefinite integrals we say, for example, that 1
n+1x

n+1 + C is the (indefinite) integral of xn

where xn is the integrand. The process of finding the integral is called integration.

Using our notation for indefinite integrals and our knowledge of derivatives gives the following.

Table of Indefinite Integrals

1.

∫
xn dx =

1

n+ 1
xn+1 + C (n 6= −1)

2.

∫
cosx dx = sinx+ C

3.

∫
sinx dx = − cosx+ C

4.

∫
sec2 x dx = tanx+ C

5.

∫
secx tanx dx = secx+ C

6.

∫
csc2 x dx = − cotx+ C

7.

∫
cscx cotx dx = − cscx+ C

8.

∫
cf(x) dx = c

∫
f(x) dx

9.

∫
[f(x)± g(x)] dx =

∫
f(x) dx±

∫
g(x) dx

In the last two integration formulae f(x) and g(x) are functions while c is a constant.

5Indeed, due to the presence of the constant C, a family of functions.
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Example 5-19

Evaluate the following integrals:

1.

∫ √
x

(
x2 − 1

x

)
dx

2.

∫ (√
x+ 3x

)2
dx

3.

∫ (
2x3 + 3

)2
x2

dx

4.

∫
(3 cos t− 2 sin t+ sec t tan t) dt

5.

∫ (
3
√
y +

1
3
√
y

)
dy

6.

∫
(x+ 1)3

x5
dx

7.

∫ 4

1

(√
3x+ 5x+ 1

)
dx

8.

∫ π
4

0

(
2 cosx− 3 sinx+ sec2 x

)
dx

The last two integrals in the example, definite integrals, illustrate that these just require the further
step, after finding the antiderivative, of finding the difference of its evaluation at the endpoints.

Answers:
Page 191

Exercise 5-7

1. Explain why we use the indefinite integral symbol,
∫
f(x) dx, to represent the general form

of the antiderivative of the function f(x) .

2-5: Evaluate the following indefinite integrals.

2.

∫ (
x3 − 3x4 − 6

)
dx

3.

∫
2 + x√
x
dx

4.

∫
csc θ cot θ dθ

5.

∫ (
tan2 x+ 1

)
dx

6. Find the general form of the function y = f(x) such that the equation y′ = x2 +9 is satisfied.
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5.6 Integration by Substitution

Consider the indefinite integral ∫
x2
√

1 + x3 dx .

Finding an antiderivative is possible if we recall the Chain Rule for differentiating compositions of
functions:

d

dx
f(g(x)) = f ′(g(x)) · g′(x) .

In this example consider
(
1 + x3

) 3
2 which can be thought of as f(g(x)) where f(u) = u

3
2 and u = g(x) = 1 + x3.

The Chain Rule gives:

d

dx

(
1 + x3

) 3
2 =

3

2

(
1 + x3

) 1
2 · d

dx

(
1 + x3

)
=

3

2

√
1 + x3 ·

(
0 + 3x2

)
=

9

2
x2
√

1 + x3 .

This is almost the integrand. Recalling that (cf(x))′ = cf ′(x) we can get rid of the 9/2 by multiplying
the original function by 2/9:

d

dx

[
2

9

(
1 + x3

) 3
2

]
=

2

9
· 9

2
x2
√

1 + x3 = x2
√

1 + x3 ,

and therefore, ∫
x2
√

1 + x3 dx =
2

9

(
1 + x3

) 3
2 + C .

This example is not very practical because the initial step of considering the derivative of
(
1 + x3

) 3
2

came out of nowhere. However it does suggest that the Chain Rule should underlie some useful
integration method. It does. In practice we focus on transforming the original integral in x into an
integral in terms of a new variable u where u = g(x) is the inner function of a composite function
found in the integrand. We have the following:

Theorem 5-8: Substitution Rule (Indefinite Integrals): Suppose u = g(x) is a differentiable
function whose range of values is an interval I upon which a further function f is continuous, then∫

f(g(x))g′(x) dx =

∫
f(u) du .

where the right hand integral is to be evaluated at u = g(x) after integration.

Note that the du appearing on the right side is the differential:

du = g′(x)dx

which, recall, can be remembered by thinking du
dx = g′(x) and multiplying both sides by dx.

To integrate using the Substitution Rule for an indefinite integral follow these steps:

1. Selection a substitution u that appears to simplify the integrand. Try to select u so that its
derivative is a factor in the integrand.

2. Express the integrand entirely in terms of u and du eliminating the original variable and its
differential.

3. Evaluate the new u integral if possible.

4. Express the antiderivative found in the last step (a function of u) in terms of the the original
variable.
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Consider the original integral again: ∫
x2
√

1 + x3 dx

Let us apply the Substitution Rule steps to solve this integral:

1. Looking at the integrand a useful substitution looks like

u = 1 + x3

since this turns
√

1 + x3 into
√
u. Differentiating u we get:

du

dx
= 0 + 3x2 = 3x2 .

Up to the constant 3 this is a factor in the integrand. Our du is:

du = 3x2 dx

2. The original integral becomes, in terms of u and du:∫
x2
√

1 + x3 dx =

∫ √
1 + x3(x2 dx) =

∫ √
u
du

3

Here we used, from our differential formula that x2 dx = du
3 .

3. Integrating we get:∫ √
u
du

3
=

1

3

∫
u

1
2 du =

1

3

1
3
2

u
3
2 + C =

1

3
· 2

3
u

3
2 + C =

2

9
u

3
2 + C

4. Replacing u with 1 + x3 gives the final result:∫
x2
√

1 + x3 dx =
2

9

(
1 + x3

) 3
2 + C

Note this last step is required as the antiderivative of a function of x must itself be a function
of x.

Example 5-20

Find the indefinite integrals:

1.

∫
5x4 + 3

(x5 + 3x+ 2)
3 dx

2.

∫
x2 − 1

(x3 − 3x+ 7)
2 dx

3.

∫
tan2 x sec2 x dx

4.

∫
x cos

(
x2 + 3

)
dx

5.

∫
cosx

(1 + sinx)
5
2

dx

6.

∫ (
x3 + 3x

)2
x2

dx

7.

∫
x3
√

1 + x2 dx

8.

∫
sec2
√
x√

x
dx

9.

∫
x5
(
2 + 3x2

) 3
2 dx

10.

∫
sin2 x dx
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Substitution Rule with Definite Integrals

When the substitution method is required for definite integrals the obvious method is to use the
substitution to find the antiderivative and then evaluate at the endpoints and subtract as usual.

Example 5-21

Evaluate the definite integral

∫ 2

0

x2
√

1 + x3 dx.

Here we recognize the indefinite integral from before. We solved this using the substitution u = 1+x3

to find the required antiderivative 2
9

(
1 + x3

) 3
2 + C so the definite integral is just:∫ 2

0

x2
√

1 + x3 dx = . . . =
2

9

(
1 + x3

) 3
2

∣∣∣∣2
0

=
2

9

[
(1 + 23)

3
2 − (1 + 03)

3
2

]
=

2

9
[27− 1] =

52

9

Notice here the constant 2
9 which was a factor of both the upper and lower limit was pulled out to

simplify evaluation.

A quicker way to solve the definite integral when doing a substitution is to skip the last step of
converting the antiderivative in terms of u back to the original variable. Instead you can convert the
limits of the original variable into new limits of the variable u.

Example 5-22

Evaluate the definite integral

∫ 2

0

x2
√

1 + x3 dx by changing the limits of the integral upon substi-

tution.

As before we have the substitution u = 1 + x3 so du = 3x2 dx. Now x ranges from lower limit 0 to
upper limit 2. The new limits of u are:

upper limit: x = 2 ⇒ u = 1 + 23 = 9

lower limit: x = 0 ⇒ u = 1 + 03 = 1

The integral becomes:∫ 2

0

x2
√

1 + x3 dx =
1

3

∫ 9

1

u
1
2 du =

1

3

[
1
3
2

u
3
2

∣∣∣∣9
1

=
2

9

(
9

3
2 − 1

3
2

)
=

2

9
[27− 1] =

52

9

Not only is changing the limits to limits in u usually faster it is also cleaner. For instance it would

be wrong to write
∫ 2

0
x2
√

1 + x3 dx = 1
3

∫ 2

0
u

1
2 du, even if you ultimately plan on converting u back to

x to find the antiderivative. The u is just a dummy variable so 1
3

∫ 2

0
u

1
2 du can be evaluated to equal

2
5
2 /9 which is not the answer to the definite integral in question.

Also note that when you change the limits to limits in u it can occur that the upper limit in u may
now be lower in value than the lower limit. There is nothing wrong with this. The upper limit in u
must correspond to the upper limit of original variable, and similarly for the lower limit.
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The whole discussion may be summarized in the following theorem.

Theorem 5-9: Substitution Rule (Definite Integrals): Suppose u = g(x) is a differentiable
function whose derivative g′ is continuous on [a, b] and a further function f is continuous on the range
of u = g(x) (evaluated on [a, b]), then∫ b

a

f(g(x))g′(x) dx =

∫ g(b)

g(a)

f(u) du .

Example 5-23

Find the definite integrals:

1.

∫ 1

0

(1 + x)
5
dx

2.

∫ 4

1

(
√
x+ 1)

4

√
x

dx

3.

∫ π
3

0

sin 3θ dθ

4.

∫ 10

2

3√
5x− 1

dx

5.

∫ 4

1

√
5− x dx

Answers:
Page 192

Exercise 5-8

1-6: Evaluate the following indefinite integrals using the Substitution Rule.

1.

∫
x2 + 2x

(x3 + 3x2 + 4)
5 dx

2.

∫
(5x+ 1)

√
5x2 + 2x dx

3.

∫ (
cos
√
t√

t
+ t3

)
dt

4.

∫
cos(θ)

√
3− sin θ dθ

5.

∫
x
√

4x+ 1 dx

6.

∫
sec2

(
2x− π

3

)
dx

7-12: Evaluate the following definite integrals using the Substitution Rule.

7.

∫ 2

0

x3
√
x4 + 9 dx

8.

∫ π
4

0

tan4θ sec2θ dθ

9.

∫ 1

0

[
1 + x+ (1− x)5

]
dx

10.

∫ 3

1

x

(2x2 + 1)
2 dx

11.

∫ π
3

π
4

sin t

cos
2
3 t
dt

12.

∫ T
3

0

cos

(
2πt

T

)
dt (T > 0 is constant)
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5.7 Symmetry and Definite Integrals

Theorem 5-10: The following is true for symmetric functions integrable on [−a, a] :

• If f(x) is even then

∫ a

−a
f(x) dx = 2

∫ a

0

f(x) dx.

• If f(x) is odd then

∫ a

−a
f(x) dx = 0.

The last theorem is obvious from consideration of the definite integral as a sum of areas for in the
even case the areas on each side of the y-axis will be equal. In the odd case the areas are also equal
in magnitude but will contribute oppositely in sign to the overall integral (since f(−x) = −f(x)).
Alternatively one may prove the theorem directly by writing∫ a

−a
f(x) dx =

∫ 0

−a
f(x) dx+

∫ a

0

f(x) dx ,

and doing a change of variables of u = −x on the
∫ 0

−a integral.

Example 5-24

Integrate the following:

1.

∫ 2

−2

(x2 + 3) dx

2.

∫ π/2

−π/2
(sinx+ sin 2x) dx

Answers:
Page 192

Exercise 5-9

1-11: Evaluate the given integrals using any method.

1.

∫ (
x3 +

√
x− 1

x2
+ 5

)
dx

2.

∫ (
x3 + 2

)2
dx

3.

∫
(2x+

√
x)

2

√
x

dx

4.

∫ (
cos θ + sec2 θ

)
dθ

5.

∫
3x2

(
x3 + 4

)5
dx

6.

∫
cos θ (sin θ + 3)

10
dθ

7.

∫ (√
t+ 7

) 4
3

√
t

dt

8.

∫ 2

−1

(2x+ 3)
4
dx

9.

∫ 1

0

x2

(x3 + 2)
3 dx

10.

∫ π
4

0

sin (2θ) dθ

11.

∫ 3
2

− 3
2

sin(tanx) dx
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5.8 Areas Between Curves

We have already calculated an area between curves. Namely, when y = f(x) ≥ 0 on [a, b] then

A =

∫ b

a

f(x) dx

is the area below the curve y = f(x) and above the x-axis. But since the y-axis is just the curve y = 0,
the above integral is also the area between the curve y = f(x) and the curve y = 0. If the lower curve
is y = g(x) instead of y = 0 we get the following result:

Theorem 5-11: If y = f(x) and y = g(x) are integrable on the x-interval [a, b] with f(x) ≥ g(x) on
the interval then the area between the curves y = f(x) and y = g(x) and the lines x = a and x = b
is

A =

∫ b

a

[f(x)− g(x)] dx .

The situation is illustrated in the following diagram:

y

x
x = a x = b

A

y = f(x)

y = g(x)

dx

f(x) − g(x)

dA

A simple way to remember the theorem is the differential notation. We are finding the sum A =
∫
dA

of the infinitesimal rectangle areas each of area dA where

dA = [f(x)− g(x)]︸ ︷︷ ︸
height

· dx︸︷︷︸
width

.

Since f(x) ≥ g(x) the height of the infinitesimal rectangular area, f(x)− g(x), is positive, even if one
(or both) of the curves lies below the x-axis. Since a < b for an interval [a, b] the width dx is also
positive, thereby ensuring a positive area element dA.

Another useful way to remember the result is that the area between the curves y = f(x) and y = g(x)
is just the area under the curve y = f(x) minus the area under the curve y = g(x). This is verified by
using the properties of the definite integral to get:

A =

∫ b

a

[f(x)− g(x)] dx =

∫ b

a

f(x) dx−
∫ b

a

g(x) dx

This interpretation gives the proper area even when one or both of the curves lie below the y-axis.
(Think about it!)
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Example 5-25

Find the area of the region bounded by y = 2x+ 4 and y = x2 + 2x+ 3 between x = 0 and x = 1
2 .

Sometimes one is asked to find the area between two curves y = h1(x) and y = h2(x) with no endpoints
a, b given. In that case the curves in question must intersect at least twice to form one (or more)
regions bounded by the two curves. The problem is illustrated below.

x

y

x0 x1 x2

A1

A2

y = h1(x)

y = h2(x)

y = h1(x)

y = h2(x)

Here the two curves intersect at three points with x-coordinates x0, x1, and x2. The total area between
the curves A = A1 +A2 where the light grey area A1 is over [x0, x1] and has h1(x) ≥ h2(x), while the
dark grey area A2 is over [x1, x2] and has h2(x) ≥ h1(x). In general proceed as follows.

1. Find the x-coordinates of the intersection points of the two curves. These will determine
where each bounded subregion begins and ends. Since an intersection point must lie on both
curves this requires that h1(x) = y = h2(x). In other words we must solve:

h1(x) = h2(x)

for x to get the solutions xi.

2. For each interval corresponding to a bounded subregion one must determine which curve is
higher than the other, i.e. which is f(x) and which g(x) in the area formula. This can be
achieved by a sketch of the curve or consideration of the values of h1(x) and h2(x) of a test
point x in the interval. If two or more regions are bounded by the curves then h1(x) and
h2(x) will typically alternate being the higher curve.

3. Calculate the area of each subregion using the area formula and add them together. (If any
subregion area results in a negative value you have misidentified the higher curve.)

Example 5-26

Find the area of the region bounded by the following curves:

1. y = 2x+ 4 and y = x2 + 2x+ 3

2. y = x2 and y = 18− x2

3. y = x2 and y = (x− 2)2 from x = 0 to x = 3
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Sometimes the region for which one wants an area is better described by functions x = f(y) and
x = g(y) denoting the right and left boundaries of the region respectively. One then has the result:

Theorem 5-12: If x = f(y) and x = g(y) are integrable on the y-interval [c, d] with f(y) ≥ g(y) on
the interval then the area between the curves x = f(y) and x = g(y) and the lines y = c and y = d
is

A =

∫ d

c

[f(y)− g(y)] dy .

The situation is depicted below:

x

y

y = c

y = d

A

x = f(y)x = g(y)

dy
f(y) − g(y)

dA

In this case the integral represents the addition of horizontal area elements dA of area

dA = [f(y)− g(y)]︸ ︷︷ ︸
width

· dy︸︷︷︸
height

.

When only the region bounded by x = h1(y) and x = h2(y) is requested with no interval [c, d] given
one must solve h1(y) = h2(y) to find the y-values yi which enclose the bounded regions and identify
the greater curve (x = f(y)) and the lesser curve (x = g(y)) for each interval.

Example 5-27

Find the area of the region bounded by the following curves:

1. y2 = 2x+ 10 and y = x+ 1 2. 2y2 = x+ 4 and x = y2

If given a choice of doing a vertical or horizontal area analysis of a bounded region one should consider:

• Whether the enclosing curves can be written as functions of x or y.

• Whether the area is comprised of any horizontal or vertical lines.

• Whether the area would require piecewise defined functions along either direction.

Example 5-28

Find the area of the region bounded by the following curves:

1. x2 + y = 1 and x− y = 1

2. y2 = 4 + x and y2 + x = 2

3. y = x+ 6, y = x3, and 2y + x = 0
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Answers:
Page 193

Exercise 5-10

1-7: Find the area of the region bounded by the given curves.

1. y = x2 − 3x+ 8 and y = 4x− x2 over the closed interval [−1, 2] .

2. y = x2 − 5x− 1 and y = x− 6 over the closed interval [1, 6] .

3. y = x2 + 6, y = 2x2 + 2

4. x = 2y2, x = y2 + 4

5. y = x2 − 2x, y = x− 2

6. y = 0, y = 2x, x+ y = 3

7. y =
8

x2
, y = x, y = 4x2 + 4x and lying in the first quadrant (x > 0 and y > 0) .
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5.9 Net Change

If a variable y is a function f of x, then as x changes from x1 to x2, and so undergoes a change
∆x = x2 − x1, there is a corresponding change in y of ∆y = y2 − y1 = f(x2)− f(x1). Assuming f has
continuous first derivative f ′ on [x1, x2] it follows by the Fundamental Theorem of Calculus that the
net change in y is

∆y =

∫ x2

x1

f ′(x) dx .

In other words, if we know the derivative dy
dx = f ′(x), we can calculate the change in y from its

initial value y1 at x1 as x changes to x2. In our formula, one notes that since the differential dy is
dy = f ′(x) dx the total change in y, ∆y, is just the sum of infinitesimal changes in y, i.e. ∆y =

∫ y2
y1
dy

as one expects.

Often the independent variable x is time t. For instance, an object undergoing motion in one spatial
dimension with velocity v = ds

dt will have a total change in displacement s(t) given by

∆s =

∫ t2

t1

ds

dt
dt =

∫ t2

t1

v dt

between times t1 and t2.

Example 5-29

A ball thrown vertically upward has velocity given by v(t) = −10t+ 18 in m/s. What is the total
change in displacement of the ball between t = 1 and t = 2 seconds?

Example 5-30

Over the first 20 years of its existence a factory had a production rate of units given by

dU

dt
= 1000 + 150t [units/year] .

How many units did the factory produce in its first 20 years?

Example 5-31

In Question 7 of Example 3-33 (page 81), the rate of change of height of the pyramid frustum with
time was

dh

dt
=

1

B2
(
1− h

H

)2R ,

where B = 230 m was the length of the base of the pyramid, H = 150 m was its final height, and
R = 360 m3/day was the constant rate of change of volume with time. The rate of change of time
with respect to height is the reciprocal:

dt

dh
=
B2

R

(
1− h

H

)2

.

How long did it take to build the top third of the pyramid? (i.e. from 2/3 of its final height to its
final height.)6

6Note you can check your answer directly by working out the volume of the top third of the pyramid and dividing
by R .
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Answers:
Page 193

Exercise 5-11

1. A particle oscillates in a straight line with velocity v(t) = sin (πt) centimetres per second.
Compute the particle’s displacement over the following time intervals.

(a) t = 0 to t = 1 seconds.

(b) t = 1 to t = 2 seconds.

(c) t = 0 to t = 2 seconds.

2. The flow rate at a particular location for a large river over the month of May was approxi-
mately f(t) = − 1

3 (t− 15)2 + 100 in gigalitres per day. Here the time t is measured in days
from the beginning of the month. How much water flowed past that location between the
times t = 10 and t = 20 days?
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5.10 Differential Equations

We are accustomed to solving equations like x3 − 4x = 0 to find those values of x that make the
equation true (i.e. the solutions, here x = −2, x = 0, and x = 2.). We now consider equations where
the unknown is not a value x, but rather a function y = f(x).

Definition: An equation which contains an unknown function and at least one of its derivatives is
called at differential equation.

Example 5-32

y′′ + sin(xy) + 2 =
1

x
is a differential equation involving unknown function y = f(x).

Definition: The highest order derivative that occurs in a differential equation is called the order of
the differential equation.

Example 5-33

The order of the following differential equations is as follows:

1. y′ + 3xy = sinx (1st order)

2.
d2y

dx2
+ 3

dy

dx
+ 5y = cosx (2nd order)

3. xy′ + 3y sinx = x2 + 5 (1st order)

Definition: If a function y = f(x) and its derivatives when substituted into a differential equation
satisfies that equation then f(x) is called a solution of the differential equation.

Example 5-34

Show that the given function is a solution of the given differential equation:

1. y = 2x2 + cx in xy′ − y = 2x2

2. y = x sinx in y′′ + y − 2 cosx = 0

The first solution in Example 5-34, containing a constant, is called a general solution to the dif-
ferential equation.7 It can be shown that n different constants are required for a general solution to
a differential equation of order n. Choosing different values for the constant(s) in a general solution
generates a family of solutions to the differential equation. Assigning specific values to the constants
in a general solution yields a particular solution to the differential equation. The second solution in
Example 5-34 is a particular solution to that differential equation. The next graph shows particular
solutions generated by using the constants c = 1/10, c = 1, and c = 3 respectively in the general
solution of the first problem in Example 5-34.

7Other solutions called singular solutions may also arise for certain differential equations.
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y

x

y = 2x2 + 3x (c = 3)

(1, 5)

y = 2x2 + x (c = 1)

(1, 3)

y = 2x2 + x
10

(c = 1/10)

(1, 21/10)

1

Physical problems often require finding a function that is not only a solution to a differential equation
but also satisfies initial conditions at some value of the independent variable. For example one
may require the function satisfy the constraint y(t0) = y0 for given constants t0 and y0. Here the
terminology initial arises from problems for which the independent variable is time. An initial value
problem is one for which one seeks a solution to a differential equation that satisfies a given set
of initial conditions. The initial conditions of the problem determine the constants of the general
solution to the differential equation. The resulting particular solution is the physical solution to the
problem. Higher order differential equations require more initial conditions, which may involve either
the function or its derivatives having specified values at time t0.

Example 5-35

1. Find the value of c that makes y = 2x2+cx a solution to the initial value problem xy′−y = 2x2,
y(1) = 5 .

2. For the initial value problem y′ + y tan t = sec t, y(0) = 2, show that y = sin t + C cos t is
a general solution to the differential equation and find the value C that makes it satisfy the
initial condition.

As the previous example shows, solving an initial value problem given a general solution to the differ-
ential equation amounts to solving one (or more) equations for the unknown constant(s). An equation
is generated using each of the initial conditions substituted into the general solution, or potentially
its derivatives. So the central problem becomes how to find the general solution to a given differential
equation. Books and courses are devoted to that problem. However there is a class of such differential
equations we can solve at this point, namely those of the form

y(n) = g(x) ,

where y(n) is the nth derivative of y with respect to x and g(x) is a function of x. When n = 1 we have

y′ = g(x) .
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In Section 5.1 we have already seen that the solution to such a problem is just the antiderivative of
g(x). Since the indefinite integral is just the antiderivative, it follows that the solution of

y′ = g(x)

is just

y =

∫
g(x) dx+ C .

Here the constant of integration has been written explicitly. It is this constant that make the indefinite
integral the general solution to the differential equation. The constant C will be determined by the
given initial condition in an initial value problem.

For the higher order differential equation

y(n) = g(x)

one can, in principle, integrate n times with respect to x. Each such integration will introduce a new
constant of integration so that our general solution y(x) will contain n constants as expected for this
order n differential equation. These, in turn, must be determined by n initial conditions to find the
physical solution to the initial value problem.

Example 5-36

Solve the following differential equations and initial value problems.

1.
dy

dx
= sin2x cosx

2. y′′ = x2 + cosx

3.
√

1− x2 +
x

y′
= 0, y(0) = 3

4.
d2y

dt2
= −9.8 m/s

2
, y(0) = 3 m,

dy

dt

∣∣∣∣
t=0

= 2 m/s

Answers:
Page 193

Exercise 5-12

1. Show y = x3 + 2x+ 2 is a solution of the differential equation 2y′′ + 3xy′ − 9y + 18 = 0 .

2. Show y(t) = A cos (2t) +B sin(2t) is a general solution to the differential equation
y′′ + 4y = 0 . If as well y(0) = 3 and y′(0) = 5, find the constants A and B for the particular
solution to that initial value problem.

3-5: Solve the following differential equations and initial value problems.

3.
dy

dx
=
√
x+ cscx cotx

4.
d2x

dt2
= (2t+ 3)5

5. y′ = 2x+ sinx, y(0) = 1
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Answers:
Page 194

Chapter 5 Review Exercises

1-4: Find the antiderivative of the given functions.

1. f(x) =
5
√
x3 +

4√
x

+ x3 + 10

2. g(x) =

√
x3 + 5x+ 1

2x3

3. f(θ) = 3 sin θ + 5 cos θ + θ3 + 1

4. g(θ) = 2 tan θ sec θ − 2 cos θ +
1

cos2 θ

5-7: Find function f satisfying the given conditions.

5. f ′′(x) =
√
x+ x2 − 6

6. f ′′(t) = 20
3
√
x2 − 3x− 5, f(1) = 1, f ′(1) = −1

7. f ′′(θ) = 5 sin θ − 4 cos θ + 10, f(0) = −13, f ′(0) = 2

8-13: Evaluate the given integrals.

8.

∫
x4
(
x5 + 3

)8
dx

9.

∫
sec2(2θ) [tan(2θ) + 1]

5
dθ

10.

∫ (
5
√
t2 − 4

) 1
3

5
√
t3

dt

11.

∫ 1

−1

x(x− 1)6 dx

12.

∫ π/4

0

cos4(3x) sin(3x) dx

13.

∫ π
3

0

cos2(3θ) dθ

14-16: Find the area of the region bounded by the given curves.

14. y = x2 + 1 and y = 5.

15. y = x, y = 4x, and x+ y = 3.

16. x = 10− y2 and x = 2 + y2.
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17-18: Solve the following differential equations and initial value problems.

17. y′ =
3 + x5

x2

18. y′ secx = 2, y(0) = 3
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The inequality −5 < 2 is true because -5 is to the left of 2 on the number line, or equivalently the
difference 2 − (−5) = 7 is positive (strictly greater than zero).1 We can exchange both sides of the
inequality if we flip the direction of the inequality. So, using a greater than sign (>) instead of the less
than sign we have 2 > −5 which is also true. In either case the pointy side of the inequality points to
the smaller number and the open side points to the larger number. Note that smaller and larger means
with respect to the position of the numbers on the number line, not the magnitude of the numbers.
Thus −5 < 2 is true despite the fact that the magnitude of -5 (which is | − 5| = 5) is greater than the
magnitude of 2 (which is |2| = 2).

Just as in equations we often introduce a variable in an inequality, such as x < 5 . The set of all x that
satisfy this inequality is the interval (−∞, 5). Inequalities can either be strict (< or >) or otherwise
(≤ or ≥) . Here ≤ means “less than or equal to”. So writing x ≤ 5 is logically equivalent to

x < 5 or x = 5 .

If desired one can find those values satisfying this inequality by solving the strict inequality and the
equality separately and combining (taking the union of) the results. In this simple example the set of
x satisfying the inequality is clearly (−∞, 5] .

When the variable is not already isolated on one side of the inequality one will want to solve the
inequality to find those values that make it true. One often has to manipulate inequalities to isolate
the variable x, to find those solutions. When it comes to addition or subtraction, inequalities can be
manipulated like equations. So x − 5 < 0 can be solved to get x < 5 by adding 5 to both sides of
the inequality. This similar behaviour is also the same when we multiply or divide both sides of an
inequality with a positive number. However when solving an inequality one has to be careful when
multiplying or dividing by negative numbers. In that case one must remember to flip the direction of
the inequality. To see that this is necessary consider x − 5 < 0 again. We can legitimately subtract
x from both sides to get the equivalent inequality −5 < −x. Now, however if we multiply (or divide)
both sides by -1 without flipping the inequality direction we would get 5 < x which is wrong as we saw
above that x < 5 is the correct answer. Thus when multiplying (or dividing) both sides of −5 < −x
by the negative number −1 we must flip the inequality to get 5 > x which is equivalent to the correct
inequality x < 5 we found above.

When reciprocating both sides of inequality care must also be taken. If 2 < 5 then we see that one
must flip the inequality when reciprocating since 1

2 >
1
5 . In general for 0 < a < b (which means “0 < a

and a < b”, so a and b are both positive)2 one must flip the inequality:

0 < a < b ⇒ 0 <
1

b
<

1

a
.

This flipping also occurs if a and b are both negative (a < b < 0). If one of a or b is positive and the
other is negative however then the inequality does not flip, since the sign of the reciprocal numbers will
be the same sign as the original numbers and the initial inequality ordering is therefore maintained.

If our original inequality does not have a simple linear form for the variable (like ax + b < 0) then
solving the inequality is more work. Consider solving the inequality involving a rational function such
as

x2 + 5x+ 6

5− x
< 0 .

We can factor this into the linear expressions:

(x+ 3)(x+ 2)

5− x
< 0

1If one wishes to say a number is positive or zero (i.e. x ≥ 0) one can use the term non-negative.
2The notation a < b < c reflects the transitive nature of inequalities, that is if a < b and b < c then a < c is also

true.
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In words this inequality is looking for those values of x which make the left hand side of the inequality
negative. For a rational expression such as this, this means we have to have an odd number of negative
factors in the expression as a whole (numerator and denominator), which can happen in several ways,
namely

(+)(+)

(−)
or

(+)(−)

(+)
or

(−)(+)

(+)
or

(−)(−)

(−)
.

Each one of these expressions can contribute to the solution (since they are logically connected by

“or”). Looking at the first possibility, (+)(+)
(−) , we require

x+ 3 > 0 and x+ 2 > 0 and 5− x < 0 .

Solving each inequality shows this is equivalent to

x > −3 and x > −2 and x > 5 .

Now because these must all be true for a given solution x (due to the “and”) we can clearly simplify
this logic. We have the intersection of three intervals, namely (−3,∞) ∩ (−2,∞) ∩ (5,∞) which just
equals (by considering, for instance, the overlap of these intervals on the number line) the interval
(5,∞). In other words, if logically x must be greater than -3 and -2 and 5 then it just must be greater

than 5. Sign analysis of the second possibility, (+)(−)
(+) , implies

x+ 3 > 0 and x+ 2 < 0 and 5− x > 0 ,

or
x > −3 and x < −2 and x < 5 .

The overlap of these intervals is

(−3,∞) ∩ (−∞,−2) ∩ (−∞, 5) = (−3,−2) ,

so −3 < x < −2. The third option, (−)(+)
(+) , yields

x+ 3 < 0 and x+ 2 > 0 and 5− x > 0 ,

or
x < −3 and x > −2 and x < 5 .

The overlap of these intervals,

(−∞,−3) ∩ (−2,∞) ∩ (−∞, 5) ,

contains no points (since the first two intervals have no overlap). We can write this “solution” using

the empty set ∅ which we recall is defined to be { }. The final possibility, (−)(−)
(−) implies

x+ 3 < 0 and x+ 2 < 0 and 5− x < 0 ,

or
x < −3 and x < −2 and x > 5 .

These intervals again have no common solution,

(−3,∞) ∩ (−∞,−2) ∩ (5,∞) = ∅ .

Putting together the four possibilities we get the complete solution to the inequality which is the union
of the intervals (since they are logically connected by “or”) namely

(5,∞) ∪ (−3,−2) ∪∅ ∪∅
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which simplifies to
(−3,−2) ∪ (5,∞) .

Alternatively, using set theory notation, the solution is

{x ∈ R | − 3 < x < −2 or 5 < x} .

The above sign analysis can be expedited by first tabulating where each linear factor is positive and
negative:

Factor Positive on Negative on

x+ 3 (−3,∞) (−∞,−3)
x+ 2 (−2,∞) (−∞,−2)
5− x (−∞, 5) (5,∞)

and then intersecting the intervals required for each sign combination.

If our original inequality had instead been

x2 + 5x+ 6

5− x
≤ 0 ,

then we would have also had to include the solutions to

(x+ 3)(x+ 2)

5− x
= 0 ,

namely where the numerator vanishes, x = −3 or x = −2. Our solution would then have to include
these interval endpoints, namely

[−3,−2] ∪ (5,∞) ,

or
{x ∈ R | − 3 ≤ x ≤ −2 or 5 < x} .

Note that x = 5 is not included; the left hand side of the inequality is undefined there.

If our inequality had been
x2 + 5x+ 6

5− x
> 0 ,

then we could again do sign analysis, this time requiring an even number of negative factors to produce
a positive expression. In our example above this is:

(+)(+)

(+)
or

(−)(−)

(+)
or

(−)(+)

(−)
or

(+)(−)

(−)
.

Using our earlier linear factor table we have immediately that the solution is

[(−3,∞) ∩ (−2,∞) ∩ (−∞, 5)] ∪ [(−∞,−3) ∩ (−∞,−2) ∩ (−∞, 5)]

∪ [(−∞,−3) ∩ (−2,∞) ∩ (5,∞)] ∪ [(−3,∞) ∩ (−∞,−2) ∩ (5,∞)]

which simplifies to
(−2, 5) ∪ (−∞,−3) ∪∅ ∪∅ = (−∞,−3) ∪ (−2, 5) ,

or
{x ∈ R |x < −3 or − 2 < x < 5} .
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Since being greater than zero is the complement3 of being less than or equal to zero we can confirm
this result, by taking the complement of our previous ≤ solution,

[−3,−2] ∪ (5,∞) ,

to get
(−∞,−3) ∪ (−2, 5)

for our greater than solution. Once again, x = 5 must be excluded when taking the complement as
that value is not in the domain of the rational function.

As an alternative approach to the above procedure, one can analyze the inequality

x2 + 5x+ 6

5− x
< 0

by looking at those locations where the rational function f(x) = x2+5x+6
5−x can potentially change sign.

In places where f(x) is continuous this can only occur only if f(x) = 0. Graphically speaking, the
curve y = f(x) crosses the x-axis (y = 0) to go from negative to positive or vice versa. If there is a
discontinuity in the curve at a point x, say where the function f(x) is undefined, then a change in sign
of f(x) can potentially occur there as well. So in the above example we have that

f(x) =
x2 + 5x+ 6

5− x
=

(x+ 3)(x+ 2)

5− x

equals zero when the numerator vanishes, namely when factors x+ 3 = 0 or x+ 2 = 0, or simply when
x = −3 or x = −2. The function is undefined when the denominator vanishes, so 5−x = 0 (or x = 5).
These three values of x partition the real axis into four open intervals, namely (−∞,−3),(−3,−2),
(−2, 5), and (5,∞) . On each of these intervals, by our previous argument, the function must be either
positive (f(x) > 0) or negative (f(x) < 0). To determine which, we can take a convenient test value
within each interval and find the sign of f at that point. So, for instance, on (−∞,−3) we find that
f(−4) = 2

9 > 0 so the function is positive on that interval. A summary of the analysis of all the
intervals is on the following table.

Interval Test Point f(x) Sign f(x) Interpretation

(−∞,−3) −4 2
9 + f positive on interval

(−3,−2) − 5
2 − 1

30 − f negative on interval

(−2, 5) 0 6
5 + f positive on interval

(5,∞) 6 −72 − f negative on interval

From this we see that x2+5x+6
5−x < 0 has solution (−3,−2) ∪ (5,∞) as before while x2+5x+6

5−x > 0 has
solution (−∞,−3) ∪ (−2, 5). Finally if the inequality is not strict (so ≤ or ≥) we have to include
solutions to the equation f(x) = 0 (here x = −3 or x = −2) in our solution, which, as before, are
endpoints which close some of these intervals.

Either of the previous procedures rely on writing the expression f(x) as a rational expression so that we
have a product and/or quotient of factors. To do this one might need to get a common denominator.
For instance to solve the inequality

2x2 + 6

5− x
+ x < 0

3The complement of a set A is the set U −A where U is the universal set of elements under consideration. Usually
U will be R if we are considering real numbers, but in this case U is those values for which the inequality can be evaluated,
namely the domain of the rational function. The complement of a set A is sometimes denoted A′, Ac, Ā or Ã .
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we can multiply the second term by 5−x
5−x to rewrite the left hand side as

2x2 + 6

5− x
+
x(5− x)

5− x
< 0

which simplifies, upon expanding and combining the numerators, to

x2 + 5x+ 6

5− x
< 0 ,

which can be solved as before to get x in (−3,−2) ∪ (5,∞).

In general if we do not have zero on both sides of the inequality, we can use the rules given previously
to rewrite the inequality with f(x) on one side and 0 on the other. So for, instance, if we had to solve

x <
2x2 + 6

x− 5

we could subtract the right side from both sides to get

−2x2 + 6

x− 5
+ x < 0

Bringing the minus sign into the denominator of the first term,

−1 · 2x2 + 6

x− 5
=

1

−1
· 2x2 + 6

x− 5
=

1(2x2 + 6)

−1(x− 5)
=

2x2 + 6

5− x
,

our inequality becomes
2x2 + 6

5− x
+ x < 0

which we solved above to get (−3,−2) ∪ (5,∞) .

Note however, that while adding and subtracting an expression involving x does not modify the
inequality, multiplying or dividing by such an expression requires care. For instance if we wanted to
solve the inequality

x(x− 5) < 2x2 + 6

then the easiest way to do so is to expand the left hand side and subtract it from both sides to get the
equivalent inequality

0 < 2x2 + 6− (x2 − 5x)

or more simply
0 < x2 + 5x+ 6 .

Factoring the right hand side gives
0 < (x+ 3)(x+ 2)

which, upon sign analysis (so (−)(−) or (+)(+) ) results in the solution (−∞,−3) ∪ (−2,∞). But
suppose instead we started again with

x(x− 5) < 2x2 + 6

but wanted to divide both sides by (x− 5). Since (x− 5) could be positive or negative this would now
require us to solve two problems, as we can have solutions from

x <
2x2 + 6

x− 5
and x− 5 > 0 ,
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as well as (“or”)

x >
2x2 + 6

x− 5
and x− 5 < 0 .

The first inequality, x < 2x2+6
x−5 , has, as we have seen, the solutions (−3,−2) ∪ (5,∞). Requiring

x − 5 > 0 (so x > 5) means intersecting this with (5,∞) to get only (5,∞). The second inequality,

x > 2x2+6
x−5 , has solution (−∞,−3) ∪ (−2, 5) . Requiring x − 5 < 0 (so x < 5) means intersecting this

with (−∞, 5) to get (−∞,−3) ∪ (−2, 5) . Putting both possibilities together we get

(−∞,−3) ∪ (−2, 5) ∪ (5,∞) .

Finally, we should notice that x = 5 was also a solution to the original inequality. (It got lost when
we divided both sides by x− 5.) If we add this to our solution we do, finally, get

(−∞,−3) ∪ (−2,∞)

as we found the easy way. The point of this last example is that multiplying or dividing both sides
of an inequality by expressions involving a variable is non-trivial and requires some bookkeeping.
Expressions having a constant sign (like x2 +1 which is always positive) would be an exception to this.

Once an inequality is solved it should be checked by choosing some test values from the solution (to
see that they satisfy the inequality) and some values that are not part of the solution (to see that they
do not). Graphing the non-zero side of the inequality can be done to check many values at once.

Answers:
Page 194

Exercise A-1

1-3: Solve the inequalities.

1. x2 − 6x− 7 > 0

2.
1− 2x

x2 + 4x+ 3
≤ 0

3.
10

7− x
< x
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To solve the trigonometric equation

sin θ = −1

2

we need to find the angles θ that make the equation true. One way to get an answer is to apply the
inverse sine function sin−1(x), also written arcsin(x), to both sides of the equation to get the solution

θ = sin−1

(
−1

2

)
= −0.523598875 (radians) ,

assuming your calculator is in radian mode. Otherwise if your calculator is in degree mode it would
return −30◦. The problem, however, is that the sine function defined on its usual domain D = R is
not invertible and the above procedure only returns the solution to the original equation that lies in
[−π/2, π/2]. There are many more, in fact infinitely many more, solutions to the original equation.
To see this, plot the sine function and look to see those values of θ which make sine equal -1/2 :

−1

1

y

θ

y = sin θ

y = −1
2

π
2 π 3π

2
2π−π2−π− 3π

2
−2π

The circles indicate all the solutions with the first small circle to the left of the origin being the one
provided by the calculator. Other solutions (the other smaller dots) can be found by adding integer
multiples of 2π (±2π, ±4π, . . .) to this value. This occurs due to the periodicity of sine, that is, because

sin(θ + 2π) = sin(θ) .

However, as shown in the diagram, there is an infinite number of other possible solutions labelled by
the larger dots; these also are separated from each other by multiples of 2π. Note that one of these
solutions also lies in [0, 2π).

As a general strategy to solving the equation

trig(θ) = # ,

where trig represents one of sine, cosine, and tangent, and # is some numerical value, we first find the
“physical” angle solutions (usually two of them) in the interval [0, 2π). In a geometrical problem, the
other angle solutions will overlap with these two angles as they just are adding multiples of 360◦ (2π)
to them. For problems where the trigonometric equation is not arising from a geometrical problem the
other solutions may be meaningful as well.



Solving Trigonometric Equations 165

Follow these steps to find the solutions of trig(θ) = # :

Step 1: Consult the following CAST diagram to determine in which quadrants your two solutions lie.

Quadrant III

Tangent Positive

Quadrant IV

Cosine Positive

Quadrant II

Sine Positive

Quadrant I

All Positive

y

x

θ

In our case # = −1/2 is negative and our trigonometric function is sine. The CAST diagram
shows sine is positive in the first quadrant and the second quadrant. Since our value is negative
our solutions lie in quadrant III and quadrant IV. (If the value is exactly zero you can consider
it a small positive number for purposes of this step.)

Step 2: Draw two diagrams showing your angle solutions in each quadrant. Also label the reference
angle θ′ which is the acute angle from your terminal ray to the x-axis. (The reference angle θ′

will be the same for each of your solutions.) Determine the value of θ in terms of your reference
angle. In our case we have1

0, 2π

θ

0, 2π

θ

Quadrant III Quadrant IV

θ = π + θ′

θ′θ′

θ = 2π − θ′

ππ

Step 3: Next we need to solve for the reference angle θ′. The reference angle satisfies the identical
equation as the original equation except we need to take the absolute value of the number:

trig(θ′) = |#|

In our example, since our value is negative we need to make it positive:

sin(θ′) =
1

2

(If the value in our θ equation had been positive then the θ′ equation would have been identical
to the θ equation.) Since the reference angle by definition is acute it satisfies 0 ≤ θ′ ≤ π

2 . From

1The relation between θ and θ′ are the same for any problem, namely θ = θ′ for quadrant I, θ = π−θ′ for quadrant II,
θ = π + θ′ for quadrant III, and θ = 2π − θ′ for quadrant IV. The student should verify each of these with a diagram.
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our basic triangles one sees that the angle that has a sine of 1/2 is θ′ = π
6 . Alternatively the

calculator’s inverse sine function will give us the correct answer in decimal (assuming radian
mode):

θ′ = sin−1(1/2) = 0.523598775 .

Obviously it is better to use the exact answer π/6 obtained by thinking about the relevant
30-60-90 triangle.

Step 4: Next we get our two solutions for θ by using the relationships we derived in Step 2. For our
quadrant III solution we have

θ = π + θ′ = π +
π

6
=

6π

6
+
π

6
=

7π

6
,

while for our quadrant IV solution we get

θ = 2π − θ′ = 2π − π

6
=

12π

6
− π

6
=

11π

6
.

Step 5: Finally since all the trig functions are periodic, trig(θ+2π) = trig(θ), we need to add 2nπ for
all possible integers n (0,±1,±2, . . .) to each of the solutions from Step 4 to get the remaining
solutions. In our case we have for the complete solution set:{

7π

6
+ 2nπ | n an integer

}
∪
{

11π

6
+ 2nπ | n an integer

}
.

We have shown how to solve a trigonometric equation of the form trig(θ) = #, for trigonometric
functions sine, cosine, and tangent. If your equation is not in this standard form try to solve for the
trigonometric function. Thus, for example, 2 sin θ + 1 = 0 is the same equation as sin θ = −1/2 once
you solve for the trigonometric function.

If you have a trigonometric equation involving a single cosecant, secant, or cotangent, try to solve for
the trigonometric function as before and then reciprocate both sides. Thus to solve

csc(θ) = −2

we reciprocate both sides to get
1

csc(θ)
= −1

2
.

But now we use the identity csc(θ) = 1/ sin(θ) to get

sin(θ) = −1

2
.

which we have already solved. Similarly a secant equation can be turned into an equation involving
cosine and a cotangent equation an equation involving tangent.

Next suppose the argument of our trigonometric function is more complicated than θ. Suppose we
wish to solve2

sin(3θ) = −1

2
.

In that case just define a new variable α equal to the argument, here α = 3θ. Then we have that

sin(α) = −1

2
.

2Recall that sin(3θ) 6= 3 sin θ in general so we cannot “pull out the 3” from the argument of sine to simplify our
equation. That sin(3θ) 6= 3 sin θ in general can be verified by plugging a few values of θ into your calculator.
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The solutions for this, as we found above, are:

α ∈
{

7π

6
+ 2nπ | n an integer

}
∪
{

11π

6
+ 2nπ | n an integer

}
.

But α = 3θ implies θ = α
3 so we need to divide each of our α solutions by 3 to get our θ solutions:

θ ∈
{

7π

18
+

2nπ

3
| n an integer

}
∪
{

11π

18
+

2nπ

3
| n an integer

}
.

If you list out the solutions you will see that there are now 6 different “physical” solutions in [0, 2π),
namely {

7π

18
,

19π

18
,

31π

18
,

11π

18
,

23π

18
,

35π

18

}
.

If the original equation we were solving arose from a geometrical problem where there had to be a
single answer for some reason, further information would need to be used to identify which angle was
the unique solution to the problem.

What if your trigonometric function cannot be isolated? Suppose we wish to solve the trigonometric
equation

sin2θ − 1

4
= 0 .

Recognizing that sin2θ = (sin θ)2 by definition, note that if we let x = sin θ our original equation
becomes:

x2 − 1

4
= 0 .

By making the substitution we have turned our problem into solving a simple quadratic equation.
Recognizing a difference of squares (or using the quadratic formula) we see there are two solutions,
namely x = −1/2 or x = 1/2. How does this help? Well x = sin θ so now we just have to find all the
solutions of3

sin θ = −1

2
or sin θ =

1

2
.

The first equation we have already solved. For the second we note that our two solutions lie in quadrant
I and II because that is where sine is positive. In terms of the reference angle (draw the diagrams) we
see that the quadrant I solution is just θ = θ′ while the quadrant II solution is θ = π− θ′. In this case
our reference angle satisfies sin θ′ = |1/2| = 1/2 which we already solved before to get θ′ = π/6. Our
quadrant I solution is therefore:

θ = θ′ =
π

6
while our quadrant II solution is

θ = θ′ = π − π

6
=

5π

6
.

(At this stage it would be prudent to check on your calculator that the sine of these angles really is
1/2 .) Next our solutions for the second equation are, by periodicity:{π

6
+ 2nπ | n an integer

}
∪
{

5π

6
+ 2nπ | n an integer

}
Combining these with the solutions to the sin θ = −1/2 equation gives for the complete solution set:{

7π

6
+ 2nπ | n ∈ Z

}
∪
{

11π

6
+ 2nπ | n ∈ Z

}
∪
{π

6
+ 2nπ | n ∈ Z

}
∪
{

5π

6
+ 2nπ | n ∈ Z

}
,

3Note that we logically want or and not and in this equation as either x = −1/2 or x = 1/2 was a solution to the
quadratic. If the situation arose where we really did want to find those θ that solved sin θ = − 1

2
and sin θ = 1

2
we would

have to take the set intersection (∩) not the set union (∪) below of the solution sets of each equation and we would, in
fact, see there is no θ satisfying both equations. (Which of course there could not be as an angle cannot have a sine that
is both 1/2 and simultaneously −1/2 .) So be careful to use or and and appropriately.



168

where here we have used ∈ for “element of” (in) and Z, the traditional symbol for the set of integers
(Z = {0,±1,±2, . . .}).

Looking back at the last two examples we see that in both equations we were recognizing function
composition to simplify the problem. In the first we had trig(g(θ)) = # while in the second case we
had f(trig(θ)) = # for some functions f and g. As discussed in Section 1.2.10, when composition like
this occurs, solving the problem becomes a two step process, namely solving the outer equation and
then the inner equation equalling the solutions of the former.

Returning to the trigonometric equations, what do you do if the problem involves more than one
trigonometric function? Suppose we wish to solve:

sin θ − tan θ cos3 θ +
1

8
= 0 .

One strategy is to use trigonometric identities to try to write the expression in terms of a single
trigonometric function.4 Since all trigonometric functions can be written in terms of sine and cosine,
for instance, we could try writing the above expression using the identity tan θ = sin θ/ cos θ to get an
expression in terms of just sine and cosine:

sin θ − sin θ cos2 θ +
1

8
= 0 .

Next since only even powers of cosine appear here we can use the Pythagorean identity sin2 θ+cos2 θ = 1
(so cos2 θ = 1− sin2 θ) to get

sin3 θ +
1

8
= 0 .

Now the expression only involves sin θ. Isolate sin θ to get

sin3 θ = −1

8
.

Since cubing is an invertible function we can cube root both sides to get

sin θ = −1

2
.

This is the same problem we solved originally so the solution to this problem is the same as that one.
In summary, trigonometric identities are useful for transforming complicated trigonometric equations
into ones that can be solved.

Suppose you cannot find a way to transform your trigonometric equation into one involving a single
trigonometric function. A further technique which can be used is to rearrange your equation so that
zero is on the right and then try to see if you can factor the expression on the left so that each factor
involves only a single trigonometric function (or can be transformed to such a factor with identities).
For instance, suppose we wish to solve:

2 sin θ tan θ + 2 sin θ + tan θ = −1 .

Putting all terms on the left hand side this becomes

2 sin θ tan θ + 2 sin θ + tan θ + 1 = 0 .

Notice the left-hand side factors to give the new equation:5

(2 sin θ + 1)(tan θ + 1) = 0 .

4Recall a trigonometric identity is a trigonometric equation that is true for all values of the variable. It thus can be
used to convert one expression in an equation into a simpler expression, thereby making the equation easier to solve.

5To see the factoring it may be easier to set x = sin θ and y = tan θ and notice that we have to then only factor the
algebraic expression 2xy + 2x + y + 1 = 2x(y + 1) + 1(y + 1) = (2x + 1)(y + 1) by grouping and then reintroduce the
trigonometric values of x and y at the end.
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Now since the right hand side is zero, and recalling that the only way a product can equal zero is if
one of the factors is zero, solving the original equation is equivalent to solving

2 sin θ + 1 = 0 or tan θ + 1 = 0 ,

or equivalently, upon isolating the trigonometric function,

sin θ = −1

2
or tan θ = −1 .

The first equation is our old friend with solutions:{
7π

6
+ 2nπ | n an integer

}
∪
{

11π

6
+ 2nπ | n an integer

}
.

Following the usual steps for tan θ = −1 we see by the CAST diagram that tangent is positive in
quadrants I and III. Since our right hand side is negative that means our solutions in [0, 2π) lie in
quadrants II and IV. Drawing the diagrams we see that θ = π − θ′ for the quadrant II solution and
θ = 2π − θ′ for the quadrant IV solution where the reference angle θ′ satisfies tan θ′ = 1. From our
45-45-90 triangle we recognize that the tangent of 45◦ is indeed 1 and so our reference angle is θ′ = π/4.
(Alternatively use θ′ = tan−1(1) to get this.) Our quadrant II solution is therefore θ = π−π/4 = 3π/4
and our quadrant IV solution is θ = 2π − π/4 = 7π/4. By periodicity our complete solution to
tan θ = −1 is {

3π

4
+ 2nπ | n an integer

}
∪
{

7π

4
+ 2nπ | n an integer

}
.

Listing out these values one realizes this may be simplified to6{
3π

4
+ nπ | n an integer

}
.

Finally putting the solutions to both equations together we have the solution set for the original
equation: {

7π

6
+ 2nπ | n ∈ Z

}
∪
{

11π

6
+ 2nπ | n ∈ Z

}
∪
{

3π

4
+ nπ | n ∈ Z

}
.

As a final note, if your trigonometric equation cannot be solved using any of the techniques outlined
here, remember that trigonometric functions are just functions and you can apply any numerical
solution-finding method, such as the Bisection Method, to them as you would any other equation. In
that case you should seek all the distinct solutions in the interval [0, 2π) first. Assuming you have
written your equation as f(θ) = 0, plotting f(θ) will help here to see where the solutions lie and how
many of them there are. If your equation involves only trigonometric functions and the arguments of
your trigonometric functions are θ, or more generally mθ where m is an integer, adding multiples of
2π to your solutions in [0, 2π) will also be solutions to your equation.

6This simplification results from the fact that tangent actually satisfies the simpler periodic relation
tan(θ + π) = tan θ .
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Answers:
Page 195

Exercise B-1

1-4: Solve the following trigonometric equations.

1. 2 cos θ =
√

3

2. sec θ = −2

3. cos(4α) = − 1
2

4. tan2x = tanx
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Exercise 1-1 (page 4)

1. x = 3

2. x = 3 or x = −1

2
. Written as a solution set it is {3,−1/2}

3. x =
−3±

√
−7

8
, so no real solution.

4. x = 2

5. {−2, 2, 4}

6. x = 1

7.

{
0,±

√
3

2

}

8.
{
±1,±

√
2
}

9.

{
−1,±

√
2

3

}

10.

{
−1, 0,

−3±
√

33

4

}

Exercise 1-2 (page 11)

1. D = R = (−∞,∞); x-int=0; y-int=0

2. D = [6,∞); x-int= 6; No y-int

3. D = R = (−∞,∞); x-int=-2; y-int=4

4. D = R = (−∞,∞); x-int=-5, 0 ,1; y-int=0

5. D = R− {1} = (−∞, 1) ∪ (1,∞); No x-int; y-int= −1

6. D = R− {−2} = (−∞,−2) ∪ (−2,∞); No x-int; y-int=
1

4

7. D = [−2, 2]; x-int=-2, 2; y-int=2

8. D = R = (−∞,∞); x-int= −2

3
,−1; y-int= 2

9. D = R = (−∞,∞); x-int= 1; y-int= −4

10. D = R− {−7} = (−∞,−7) ∪ (−7,∞); x-int= −5; y-int=
5

7

171
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11. D = R− {−1/2, 3} = (−∞,−1/2) ∪ (−1/2, 3) ∪ (3,∞); No x-int; y-int= −10

3

12. D = {x ∈ R|x ≤ 4} = (−∞, 4]; x-int= 4; y-int= 2

13. D =
(
−∞,−

√
10
]
∪
[√

10,∞
)
; x-int= ±

√
10; No y-int

14. D = (−∞,−6] ∪ (3/2,∞); x-int= −6; No y-int

15. D =
(
−∞,−

√
10
]
∪
[√

10,∞
)
; x-int= ±

√
10; No y-int

16. D = (−2, 0) ∪ (0,∞); x-int=2; No y-int

17. Even

18. Odd

19. Neither

20. Odd

21. Neither

22. Odd

23. Even

24. Even

25. Even

26. Odd

27. Neither

28. Even

29. Odd

30. Neither

31. Even

32. Even

33. (a)

x

y

(b)

x

y

(c)

x

y

-1

(d)

x

y

1

(e) f(−x) = −f(x), and so f is odd.

Exercise 1-3 (page 18)

1.

√
3

2

2. − 1√
2

3.
1

2

4. 0

5. -
√

2

6.
√

3

7. −1

8. 1



Chapter 1 Exercises 173

Exercise 1-4 (page 21)

1. (a) f(x+ 2) =
1

x+ 4
(b) f(f(x)) =

x+ 2

2x+ 5

2. f ◦ g(x) = f(g(x)) = 2
(
x2 + 3

) 3
2 with D = R, g ◦ f(x) = g(f(x)) =

√
4x6 + 3 with D = R

3. f ◦g(x) = f(g(x)) = 3(3x−2)2 +6(3x−2)+4 = 27x2−18x+4 with D = R, g◦f(x) = g(f(x)) =
3(3x2 + 6x+ 4)− 2 = 9x2 + 18x+ 10 with D = R

4. f ◦ g(z) = f(g(z)) =

√(
z

z + 1

)2

+ 5 =

√
6z2 + 10z + 5

(z + 1)2
with D = R − {−1}, g ◦ f(z) =

g(f(z)) =

√
z2 + 5√

z2 + 5 + 1
with D = R

5. f ◦ g(x) = f(g(x)) =
2
(
x2 + 3

)
+ 5

(x2 + 3)− 4
=

2x2 + 11

x2 − 1
with D = R − {−1, 1}, g ◦ f(x) = g(f(x)) =(

2x+ 5

x− 4

)2

+ 3 =
7x2 − 4x+ 73

(x− 4)2
with D = R− {4}

6. f(x) =
√
x− 3, g(x) = x2 + 1.

7.
{
±1,±

√
2
}

Chapter 1 Review Exercises (page 22)

1. x = 1/2, x = −2. Written as a solution set: {1/2,−2}

2. {−5, 4}

3. {−2,−1, 1}

4. {±1,±2}

5. {−2, 1, 2}

6. D = R−
{
−4

5

}
, x-int=

3

2
, y-int= −3

4

7. D = (−∞,−2] ∪ [2,∞), x-int=2,−2, y-int does not exist

8. D = (−∞,−5) ∪
[
−1

2
,∞
)

, x-int= −1

2
, y-int=

√
1

5

9. D = [−8, 3) ∪ (3,∞), x-int= −8, y-int= −
√

8

3

10. Even 11. Even 12. Odd 13. Odd

14. f ◦ g(x) = f(g(x)) = x2 + 6 with D = R, g ◦ f(x) = g(f(x)) =
3

√
(x3 + 6)

2
with D = R

15. f ◦ g(t) = f(g(t)) =
2t2 + 11

t2 − 1
with D = R−{1,−1}, g ◦ f(t) = g(f(t)) =

4t2 + 20t+ 25

(t− 4)
2 + 3 with

D = R− {4}
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16. f ◦ g(x) = f(g(x)) =

√
2

x+ 3
with D = (−3,∞), g ◦ f(x) = g(f(x)) =

√
x− 1 + 5√
x− 1 + 3

with

D = [1,∞)

Exercise 2-1 (page 27)

1. (a) (−1)3 + (−1)2 − 2(−1) + 3 = 5, (0)3 + (0)2 − 2(0) + 3 = 3

(b)
3− 5

0− (−1)
= −2

(c)
x3 + x2 − 2x+ 3− 5

x− (−1)
= x2 − 2 (x 6= −1)

(d) lim
x→−1

(
x2 − 2

)
= −1

Exercise 2-2 (page 34)

1.
13

5

2. 0

3.
1

4

4. 0

5.
7

4

6. −1

9

7. 1

8. 1

9.
1

4

10. − 3

10

11. −6

12. − 1

25

13. −10

14. 12

15.
7

3

Exercise 2-3 (page 36)

1. 1

2. 1

3. 0

4.
7

5

5. 0

6. 1

7. − 1

π

8.
4

π

9. 0

10. 1

11.
1

2

Exercise 2-4 (page 40)

1. lim
x→0−

f = 4, lim
x→0+

f = 4, lim
x→2−

f = 3, lim
x→2+

f = 2, lim
x→4−

f = ∞ (limit does not exist but

approaches infinity), lim
x→4+

f = 2

2. lim
x→0−

f = −1, lim
x→0+

f = −1, lim
x→2−

f = 1, lim
x→2+

f = −2, lim
x→4−

f = 2, lim
x→4+

f = 2, lim
x→0

f = −1,

lim
x→2

f does not exist, lim
x→4

f = 2

3. lim
x→2−

f(x) =
2

3
, lim
x→2+

f(x) = 5, lim
x→2

f(x) does not exist as the left and right-handed limits are

not equal at x = 2 .

4. c =
2

7
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Exercise 2-5 (page 45)

1. ∞

2. −∞

3.
6

7

4. ∞

5. Vertical asymptote: x = 2

6. No vertical asymptotes

7. Vertical asymptote: t = 2

8. Vertical asymptotes: x = −2, x = 3

9. Vertical asymptote: x = 0

10. Vertical asymptotes: x = −4, x = 4

11. Vertical asymptote: x = 0

12. No vertical asymptotes

Exercise 2-6 (page 50)

1. “f is continuous at x = a” if (a) a is in the domain of f (b) lim
x→a

f(x) exists (c) lim
x→a

f(x) = f(a).

2. Continuous

3. Continuous

4. Removable Discontinuity

5. Continuous

6. Infinite Discontinuity

7. Jump Discontinuity

8. (a) lim
x→0−

f(x) = 1 and lim
x→0+

f(x) = 4. Therefore lim
x→0

f(x) does not exist.

(b) c = ±1

9. R− {−1, 1} . Note the limit actually exists at x = −1 but the function is not defined there.

10. Let f(x) = x3 +2x2. Then notice that f(1) = 3 and f(3) = 33. Then since f(1) < 10 < f(3) and
f is continuous, there exists a c ∈ (1, 3) such that f(c) = 10 by the IVT. Since f(c) = c3 + 2c2

the result follows.

11. f(x) = x2 + cosx − 2 is continuous on [0, 2], f(0) = −1 < 0, f(2) ≈ 1.58 > 0, so by the
Intermediate Value Theorem there is a c in (0, 2) with f(c) = 0. i.e. c2 + cos c− 2 = 0 and c is
therefore a solution to the equation.
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Chapter 2 Review Exercises (page 51)

1. 1 2.
1

24
3. −3

4
4. − 3

32
5. −1

4

6.
4

5
7.

3

4
8. 4 9. 0

10. Continuous 11. Not continuous 12. Not continuous

Exercise 3-1 (page 57)

1. (a) 8 (b) m ≈ 13 (c) Point-slope form: y = 13(x− 2) + 12 , Slope-intercept form: y = 13x− 14

2. (a) 1 cm (b) 17 cm (c) 8 cm/s (d) v ≈ 20 cm/s

3. (a)
∆V

∆P
≈ −7.47 L/atm (b) −2.49 L/atm

Exercise 3-2 (page 61)

1. f ′(2) = lim
h→0

1
(2+h)+1 −

1
2+1

h
= −1

9

2. g′(4) = lim
h→0

√
2(4 + h)−

√
2(4)

h
=

1

2
√

2

3. f ′(x) = lim
h→0

(x+ h)2 + 3− (x2 + 3)

h
= 2x

4. f ′(x) = lim
h→0

1
3(x+h) −

1
3x

h
= − 1

3x2

5. f ′(x) = lim
h→0

(x+ 2 + h)2 − (x+ 2)2

h
= 2x+ 4

6. f ′(x) = lim
h→0

√
x+ h+ 2−

√
x+ 2

h
=

1

2
√
x+ 2

7. f ′(x) = lim
h→0

3(x+h)+2
x+h+1 −

3x+2
x+1

h
=

1

(x+ 1)2

8. f ′(x) = lim
h→0

1√
x+h
− 1√

x

h
= − 1

2x
√
x

= −1

2
x−

3
2

9. lim
h→0−

√
(2 + h− 2)2

h
= lim
h→0−

√
h2

h
= lim
h→0−

|h|
h

= lim
h→0−

−h
h

= −1

lim
h→0+

√
(2 + h− 2)2

h
= lim
h→0+

√
h2

h
= lim
h→0+

|h|
h

= lim
h→0+

h

h
= 1

10. (a) Differentiable

(b) Differentiable

(c) Not Differentiable. Discontinuous at x = 0.
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(d) Not differentiable. At x = 0 the left and right hand limits for the derivative are not equal:

lim
h→0−

f(x+ h)− f(x)

h
6= lim
h→0+

f(x+ h)− f(x)

h
,

therefore the limit itself (the derivative) does not exist. Geometrically no tangent line may
be drawn at the point so there can be no derivative as that is the tangent slope.

Exercise 3-3 (page 64)

1. f ′(x) =
1

2
x−

1
2 − 12x11 =

1

2
√
x
− 12x11

2. g′(x) = −5

2
x−

7
2 =

−5

2
√
x7

3.
dy

dx
=

12

5
x2

4. f ′(u) = −4u−5 + 4u3 ; f ′(1) = 0

5. f ′(x) = 6x5 + 8x3 + 2x

6. f ′(x) =
√

3·1
2
x−

1
2 +

1
5
√

3
·1
5
x−

4
5 =

√
3

2
√
x

+
1

5
5
√

3x4

7. f ′(x) = 2a sin(π/15)x2a−1

8.
ds

dt
= −gt+ v0

9. 1(b):
dy

dx

∣∣∣∣
x=2

=
[
3x2 + 1

∣∣
x=2

= 13

2(d): v(2) =
ds

dt

∣∣∣∣
t=2

=
[
3t2 + 4t

∣∣
t=2

= 20 cm/s

3(b):
dV

dP

∣∣∣∣
P=3

= −(22.4) · P−2
∣∣
P=3

= −2.49 L/atm

10. y =
3

2
x+

1

2

11. x = 0,
4

3

12. (a) C(2000) = 368.6732 ≈ 369 ppm

(b) C ′(2000) = 1.7948 ≈ 1.79 ppm/year

(c)
C(2005)− C(2000)

C(2000)
× 100 = 2.53%.

13. (a) The volume of a cone is V = 1
3πr

2h. Use similar triangles to show that the radius of the
surface of the liquid is r = 2

5y .

(b)
dV

dy

∣∣∣∣
y=4 m

=
64π

25
≈ 8.04

m3

m

Exercise 3-4 (page 67)

1. f ′(x) =
(
4x3 − 6x

) (
x

1
3 − x

)
+
(
x4 − 3x2 + 2

)(1

3
x−

2
3 − 1

)
2. f ′(x) =

(
3x2 + π

) (
2 + x−3

)
+
(
x3 + πx+ 2

) (
−3x−4

)
3.

dy

dx
= (2x)

(
x3 + 2

) (
2x2 +

√
x
)

+
(
x2 − 1

) (
3x2
) (

2x2 +
√
x
)

+
(
x2 − 1

) (
x3 + 2

)(
4x+

1

2
x−

1
2

)
4.

df

dx
= − 2

(x− 6)2
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5. f ′(θ) =
(2θ + 3)

(
θ2 − 7

)
−
(
θ2 + 3θ − 4

)
(2θ)

(θ2 − 7)
2 = −3θ2 + 6θ + 21

(θ2 − 7)2

6. g′(x) = −1

2
x−

3
2 +

3

2
x

1
2 ; g′(4) = 47

16

7. f ′(v) = [(2)(v+4/v)+(2v+3)(1−4/v2)](v2+v)−(2v+3)(v+4/v)(2v+1)

(v2+v)2

8. h′(x) = 2cx+
3

2
√
x

(
2x2 + x

)
+
(
3
√
x+ 2

)
(4x+ 1)

Exercise 3-5 (page 68)

1. Point-slope form: y = 8(x− 2) + 1 , Slope-intercept form: y = 8x− 15

2. Point-slope form: y = −2

5
(x− 1) + 2 , Slope-intercept form: y = −2

5
x+

12

5

3. (−2,−12), (2, 4)

Exercise 3-6 (page 69)

1. f ′(x) = 18x
(
x2 + 3

)8
2.

dg

dx
= −

1
2
√
x

+ 1

(x+
√
x)

2 = − 2
√
x+ 1

2
√
x (x2 + x) + 4x2

3. f ′(t) = − 7(4t+ 3)

2 (2t2 + 3t+ 4)
3
2

4. y′ =
1

7

(
4x+ 3

x2 + x

)− 8
7 4x2 + 6x+ 3

(x2 + x)
2

5. h′(x) =
5nxn−1

3 (5xn + 4c)
2
3

6. f ′(x) = 5
[(

2x+
√
x
)4

+ 3x
]4 [

4
(
2x+

√
x
)3(

2 +
1

2
√
x

)
+ 3

]
Exercise 3-7 (page 71)

1. Use the sine addition identity followed by the fundamental limits involving sine and cosine to get
f ′(x) = 4 cos 4x .

2. f ′(x) = 2x cosx− x2 sinx

3. f ′(t) =
3t2(sin t+ tan t)− t3

(
cos t+ sec2 t

)
(sin t+ tan t)2

4.
dH

dθ
= − csc θ cot2 θ − csc3 θ ; H ′(π/3) = − 10

3
√

3

5. f ′(x) = (cosx− sinx)(secx− cotx) + (sinx+ cosx)(secx tanx+ csc2 x)

6.
df

dθ
= 0

7. (a) Since tan(π/4) = 1, x = π/4 and y = π/4 indeed satisfy the equation.
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(b) Point-slope form: y = (1+π/2)(x−π/4)+π/4 , Slope-intercept form: y = (1+π/2)x−π2/8

8. (a) −2 = 5(0) + 3(0)− 2(1)

(b) y = 11x− 2

Exercise 3-8 (page 73)

1. f ′(x) = 12
(
x8 − 3x4 + 2

)11 (
8x7 − 12x3

)
2. g′(x) =

1

2

(
3x2 + 2

)− 1
2 (6x) =

3x√
3x2 + 2

; g′(2) = 6√
14

3. f ′(θ) = 2θ cos(θ2)

4. h′(θ) = −2 cot θ csc2 θ

5. f ′(x) = sec
[(
x3 + 3

) (√
x+ x

)]
tan

[(
x3 + 3

) (√
x+ x

)] [(
3x2
) (√

x+ x
)

+
(
x3 + 3

)( 1

2
√
x

+ 1

)]

6. y′ =
(
−4 sin 3

√
x
)
·
(

1

3
x−

2
3

)
= −4 sin 3

√
x

3
3
√
x2

7. f ′(x) = (−1)
(
3 + sin2 x

)−2
(2 sinx cosx) = − 2 sinx cosx(

3 + sin2 x
)2

8.
dy

dx
= −5 (cscx+ 2)

4
cscx cotx+ 2x+ 1

9. y′ = π sec2θ + π sec2(πθ)

10. g′(x) =
1

2

(
x+
√
x
)− 1

2

(
1 +

1

2
x−

1
2

)(
x4 − 1

)7
+

(√
x+
√
x

)
(7)
(
x4 − 1

)6 (
4x3
)

=
(2
√
x+ 1)

(
x4 − 1

)7
4
√
x
√
x+
√
x

+ 28x3
(
x4 − 1

)6√
x+
√
x

11. f ′(x) = 3

(
x− 3

x+ 1

)2

· 4

(x+ 1)2
= 12

(x− 3)2

(x+ 1)4

12.
dA

dt
= −ω sin(ωt+ φ) ;

dA

dt

∣∣∣∣
t=0

= −ω sin(φ)

13. f ′(x) =
(
cos
[
cos(x2 + x)

])
·
(
− sin

(
x2 + x

))
· (2x+ 1)

14.

{
7π

6
+ 2nπ | n an integer

}⋃{
11π

6
+ 2nπ | n an integer

}⋃{π
2

+ nπ | n an integer
}

Exercise 3-9 (page 76)

1. y′ =
3− 2x

2y

2. y′ =
6x2y − 3x2 − y2

2xy − 2x3
;
dy

dx

∣∣∣∣
(x,y)=(1,2)

=
5

2

3. y′ = − b
2x

a2y
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4. y′ =
y cos(xy)

1− x cos(xy)

5. y′ =
2x− sin(x+ y)

cos y + sin(x+ y)

6. y′ =
x2 cosx+ sec y

x sec y tan y

7. (a) Noting that x
2
3 = ( 3

√
x)

2
it follows that the values x = −1 and y = 3

√
3 = (

√
3)3 simulta-

neously satisfy the equation.

(b) Point-slope form: y =
√

3(x+ 1) + 3
√

3 , Slope-intercept form: y =
√

3x+ 4
√

3

Exercise 3-10 (page 76)

1. f ′(x) = 20x4 + 6x+ 1

2.
dy

dx
= 8x7 − 6

x4
− 1

2
x−

1
2 − 2x−

3
2

3. g′(t) =
2

3
t−

1
3 + 4t3 − 12

t3

4. f ′(x) =
1

2
x−

1
2 − 5

2
x−

3
2

5. g′(x) =

(
1

2
x−

1
2 + 3

)
(x+ π) +

(√
x+ 3x+ 1

)
6. h′(y) =

3(y + 4)2(1 + 0)(y + 5)− (y + 4)3(1 + 0)

(y + 5)2
=

(y + 4)2(2y + 11)

(y + 5)2

7. y′ =
1

4

(
x3 + 2x+ 5

)− 3
4
(
3x2 + 2

)
8. f ′(θ) = −3 sin(3θ) + 2 sin θ cos θ

9. g′(x) = 2x sec2
(
x2 + 1

)
cos(x)− tan

(
x2 + 1

)
sin(x)

10.
dy

dt
=

3

4
(sin t+ 5)

− 1
4 cos t

11.
df

dx
=

1

3

(
x4 + 5x− 1

x2 − 3

)− 2
3
(
4x3 + 5

) (
x2 − 3

)
−
(
x4 + 5x− 1

)
(2x)

(x2 − 3)
2

=
1

3

(
x4 + 5x− 1

x2 − 3

)− 2
3 2x5 − 12x3 − 5x2 + 2x− 15

(x2 − 3)
2

12. y′ =
y − 3x2y4

4x3y3 + 2y − x

Exercise 3-11 (page 78)

1.
d2f

dx2
= 2 csc2 x cotx

2. f ′′(x) = 90(x− 2)8 ; f ′′(3) = 90

3. y′′ = 6x secx+ 6x2 secx tanx+ x3 secx tan2 x+ x3 sec3 x
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4. y′′ =
y − xy′

y2
=

1

y
− x2

y3

Exercise 3-12 (page 81)

1.
5√
18π

km/h

2.
6

25π
cm/sec

3.
3

2
km/sec

4.
5

3π
m/min

5.
1840

29
km/h

6.
4

5
m/sec

7. −5

4
cm/sec

Exercise 3-13 (page 84)

1. V ±∆V = 125± 15 cm3

2. V ±∆V = 288π ± 72π cm3

3. L(x) = 3 + 4(x− 2)

4. L(x) = 1 + 2(x− π/4)

Chapter 3 Review Exercises (page 85)

1. f ′(x) = 3x2

2. f ′(x) =
11

(x+ 2)2

3. f ′(x) =
1√

2x+ 1

4. y′ = 12x3 +
3
√

2

3
x−2/3 +

5

2
x−3/2

5. g′(x) =

(
1√
2x
− 4

)
(3x+ sinx) +

(√
2x− 4x+ 3

)
(3 + cosx)

6. h′(y) =
−3y − 10

2
√
y + 5 (3y + 2)

2

7. f ′(θ) = −2 cos θ sin θ − 8θ sin
(
θ2
)

8. g′(x) = 3x2 sec
(
x3 + 4

)
tan
(
x3 + 4

)
cos(2x)− 2 sec

(
x3 + 4

)
sin(2x)

9. f ′(x) =
1

5

(
x3 − 4x+ 10

4x2 + 5

)−4/5
4x4 + 31x2 − 80x− 20

(4x2 + 5)
2
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10.
dy

dx
=

y − 4x3y3

3x4y2 + 8y − x− cos y

11. Point-slope form: y = −6(x− π/2) + 3, Slope-intercept form: y = −6x+ 3π + 3

12. x = 1, x = −3

13. θ =
π

3
+ 2nπ, θ =

5π

3
+ 2nπ, θ = nπ (n an integer)

14. 57π cm3/sec

15. − 1

10
rad/sec

16.
1

2(3)1/4
cm/sec

Exercise 4-1 (page 92)

1. Note: It is assumed that the functions extend beyond the graph of the plot with the same trend
unless they are explicitly terminated with a point. The values below are approximate.

(a) Relative minima: f(−1.4) = −0.8 and f(1.9) = 0.5; Relative maxima: f(−2.0) = 2.0,
f(0.4) = 1.0, and f(1.3) = 2.6. No absolute minimum nor absolute maximum.

(b) Absolute maximum value of f(0) = 0.5 . This is also a relative maximum.

(c) Relative minimum: f(−1) = 2; Relative maximum: f(−3) = 6, f(0) = 3. Absolute
maximum: f(−3) = 6, No absolute minimum.

2. x = 2, 4

3. x = 0

4. s =
√

6

5. x = −1

3
, −3

6. t = 1

7. No critical numbers

8. t = −2, 2

9. x = −
√

5, 0,
√

5

10. θ in
{π

3
+ 2nπ | n an integer

}⋃{
5π

3
+ 2nπ | n an integer

}

11. Absolute maximum: f(−2) = f(2) = 13, Absolute minimum: f

(
± 1√

2

)
=

3

4

12. Absolute maximum: f(−1) = 2, Absolute minimum: f (−1/3) =
14

27

13. Absolute maximum: g(0) = 0, Absolute minimum: g (2/3) = −4

3

√
2

3

14. Absolute maximum: H(8) = −1, Absolute minimum: H (−1) = −4

15. Absolute maximum: f(π/4) = f(5π/4) =
1

2
, Absolute minimum: f(3π/4) = f(7π/4) = −1

2
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Exercise 4-2 (page 95)

1. f is continuous on [−1, 4], differentiable on (−1, 4), and f(−1) = f(4) = 2 so Rolle’s Theorem
applies. Solving f ′(c) = 0 shows c = 7/3 or c = −1, however only c = 7/3 is in the open interval
(−1, 4).

2. Each of the following graphs of f give one possible counterexample. There is no point in the
interval [0, 1] where the function has a horizontal tangent and hence the conclusion to Rolle’s
theorem is invalid.

(a) Continuity fails:

0 0.5 1 x
0

0.5

1

y

(b) Differentiability fails:

0 0.5 1 x
0

0.5

1

y

(c) f(0) 6= f(1):

0 0.5 1 x
0

0.5

1

y

3. Use the Mean Value Theorem.

4. c = 1 in (−1, 2) has f ′(c) =
10− (−5)

2− (−1)
= 5 .

Exercise 4-3 (page 98)

1. Decreasing on: (−∞,−1); Increasing on: (−1,∞); No relative maxima; Relative minimum:
f(−1) = 0

2. Increasing on: (−∞, 1) ∪ (1,∞); No relative maxima or minima

3. Decreasing on:

(
0,

7π

6

)
∪
(

11π

6
, 2π

)
; Increasing on:

(
7π

6
,

11π

6

)
;

Relative maximum: f

(
11π

6

)
= 2
√

3− 11π

3
; Relative minimum: f

(
7π

6

)
= −2

√
3− 7π

3

4. Decreasing on: (−∞, 0); Increasing on: (0,∞); Relative minimum: f(0) = 0

5. Decreasing on: (−∞, 0); Increasing on: (0,∞); Relative maximum: f(0) = 2. Note that the
First Derivative Test cannot be applied here because f(x) is discontinuous at x = 0. One must
return to the definition of relative maximum to evaluate the critical number x = 0 .
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6.

−2 −1 1 2 x

−2

−1

1

2

y

7.

1 2 3 x

1

2

y

Note that your graphs should be equivalent up to vertical shift by a constant.

Exercise 4-4 (page 102)

1. Notice that f ′′(x) = 24x2 and 24x2 is positive for all values of x except 0. The only potential
inflection point would therefore occur at x = 0 but the concavity is positive on both sides of
x = 0 and hence does not change at that value.

2. Notice that f ′′(x) =
2

x3
which is negative for x < 0 and positive for x > 0. Therefore the

concavity does, in fact, change at x = 0. However the function is not defined at 0 so there is no
point on the curve there (it is a vertical asymptote) and hence no inflection point exists.

3. Notice that f ′(x) = 5x2(x − 3)(x + 3), f ′′(x) = 10x
(√

2x− 3
) (√

2x+ 3
)
. Relative maximum:

f(−3) = 163; Relative minimum: f(3) = −161; Inflection points:

(
− 3√

2
,−243

2
5
2

+
405

2
3
2

+ 1

)
,

(0, 1),

(
3√
2
,

243

2
5
2

− 405

2
3
2

+ 1

)
; Concave upward on:

(
−3/
√

2, 0
)
∪
(

3/
√

2,∞
)

; Concave down-

ward on:
(
−∞,−3/

√
2
)
∪
(

0, 3/
√

2
)

;

4. Relative maximum: f(−2) = 17; Relative mininum: f(2) = −15

5. Relative maximum at f
(
−π

2

)
= 3; Relative minimum: f

(π
2

)
= −5;

6. No since f ′′(x) = 12 cos2 x sin2 x− 4 sin4 x vanishes at x = 0 so the test is inconclusive. The first
derivative test shows that x = 0 is a the location of a local minimum of f .

7. D = R = (−∞,∞); x-int= 0, 6; y-int= 0; Increasing on: (−∞, 0)∪ (4,∞); Decreasing on: (0, 4);
Relative maximum: f(0) = 0; Relative minimum: f(4) = −32; Concave upward on: (2,∞);
Concave downward on: (−∞, 2); Inflection point: (2,−16); Graph:

y

x
(0, 0)

(2,−16)

(4,−32)

6

f(x) = x3 − 6x2
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8. D = [0,∞); t-int= 0, 3; y-int= 0; Increasing on: (1,∞); Decreasing on: (0, 1); No relative
maxima; Relative minimum: g(1) = −2; Concave upward on: (0,∞); Not concave downward
anywhere; No inflection points; Graph:

y

t

(1,−2)

3

g(t) = t
3
2 − 3t

1
2

9. D = R = (−∞,∞); No x-int; y-int= 3; Increasing on: (0,∞); Decreasing on: (−∞, 0); No rela-
tive maxima; Relative minimum: F (0) = 3; Concave upward on: (−∞,∞); Not concave down-
ward anywhere; No inflection points; Graph:

y

x

(0, 3)

F (x) =
√
x2 + 9

Exercise 4-5 (page 106)

1. 0

2. ∞

3. −1

6

4. 2

5. −3

2

6.
1

3

7. ∞

8. 0

9. 1

10. −
√

2

11. 4

12. 2

13. 3

14. Horizontal asymptote: y =
3

2

15. No horizontal asymptotes

16. Horizontal asymptotes: y = −1, y = 1

17. Horizontal asymptote: y =
1

2
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18. Horizontal asymptote: y = 0 (Hint: The Squeeze Theorem, generalized to a limit at infinity, can
be used here to evaluate the limits.)

19. Horizontal asymptote: y = 5

20. Horizontal asymptote: y = 1

21. Horizontal asymptotes: y = −1

2
, y =

1

2

Exercise 4-6 (page 108)

1. Slant asymptote: y = 3x− 10

2. No slant asymptotes

3. Slant asymptote: y = x− 2

Exercise 4-7 (page 110)

1. Notice f ′(x) = 3x2 − 3 = 3(x + 1)(x − 1) and f ′′(x) = 6x. D = R = (−∞,∞); x-int= −1, 2;
y-int= −2; No asymptotes; No symmetry; Increasing on: (−∞,−1) ∪ (1,∞); Decreasing on:
(−1, 1); Relative maxima: f(−1) = 0; Relative minimum: f(1) = −4; Concave upward on:
(0,∞); Concave downward on (−∞, 0); Inflection point: (0,−2); Graph:

x

y

(−1, 0)

(1,−4)

2

f(x) = x3 − 3x− 2

2. Notice that the first and second derivatives simplify to y′(x) = − 6x

(x2 − 1)2
and y′′ =

6(3x2 + 1)

(x2 − 1)3
.

D = R−{−1, 1} = (−∞,−1)∪(−1, 1)∪(1,∞); x-int= 0; y-int= 0; Horizontal asymptote: y = 3;
Vertical asymptotes: x = −1, x = 1; Symmetric about the y-axis; Increasing on: (−∞,−1) ∪
(−1, 0); Decreasing on: (0, 1)∪(1,∞); Relative maxima: f(0) = 0; No relative minimum; Concave
upward on: (−∞,−1) ∪ (1,∞); Concave downward on (−1, 1); No inflection points; Graph:

x

y

(0, 0)

f(x) = 3x2

x2−1

x = −1 x = 1

y = 3
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3. Notice that the derivatives simplify to f ′(x) =
2x

(x+ 1)
3 and f ′′(x) =

2− 4x

(x+ 1)
4 . D = R−{−1} =

(−∞,−1) ∪ (−1,∞); x-int= 0; y-int= 0; Horizontal asymptote: y = 1; Vertical asymptote:
x = −1; No symmetry; Increasing on: (−∞,−1) ∪ (0,∞); Decreasing on: (−1, 0); No relative
maxima; Relative minimum: f(0) = 0; Concave upward on: (−∞,−1) ∪ (−1, 1/2); Concave
downward on (1/2,∞); Inflection point: (1/2, 1/9); Graph:

x

y

(1/2, 1/9)

f(x) = x2

x2+2x+1

x = −1

y = 1

Exercise 4-8 (page 112)

1. Base length= 5
2 m, Height=5

2 m, Area= 25
8 m2

2. (3/5, 16/5) . For part (a) note it is easier to minimize the distance-squared than the distance.
For part (b) the line perpendicular is y = − 1

2 (x − 3) + 2 = − 1
2x + 1

2 . To find the intersection
of this and the original line we solve the two equations simultaneously since the point of interest
must lie on both lines.

3. First number=10, Second number=5

4. Radius=
3

√
5

π
≈ 1.17 cm, Height= 2

3

√
5

π
≈ 2.34 cm

5. (a) x =
2

3
√

7
≈ 0.252 km

(b) x =
2√
15
≈ 0.516 km

(c) x =
b√(

w
v

)2 − 1

(d) Although the total time taken t does depend on a the value for x does not. As expected, it
does not matter how far upstream you start, you would still turn off at the same location.
That said, a does play a role in the solution because valid values of x must lie in the interval
[0, a]. If a had been smaller than the solution for x, say in part (a) had the starting distance
been 0.2 km, then the critical number would no longer be in the interval and that solution
would be invalid. One would consider the endpoints of the interval to see which was optimal.

6. x = 40 m, h = 20 m

7.

4 m

8 m
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8. 10
(

2−
√

2
)
≈ 5.9 km

9. x = 100 m, y =
200

π
m

10. r = 4 cm, θ = 2 rad ≈ 115◦, A = 16 cm2

Chapter 4 Review Exercises (page 115)

1. x = −1, x = −3

2. t = 0, t = 3

3. θ in
{π

6
+ 2nπ

}
∪
{

5π

6
+ 2nπ

}
∪
{π

2
+ 2nπ

}
∪
{

3π

2
+ 2nπ

}
(n an integer)

4. Absolute maximum: f(1) =
1

17
, Absolute mininimum: f(−1) = − 1

17

5. Absolute maximum: g(1) =
√

7, Absolute minimum: g(0) = 0

6. D = R = (−∞,∞); x-int=0, -8; y-int=0; No asymptotes; Increasing on: (−2,∞); Decreasing

on: (−∞,−2); No relative maxima; Relative mininimum: f(−2) = −2
10
3 + 2

4
3 ; Concave upward

on (−∞, 0) ∪ (4,∞); Concave downward on (0, 4); Inflection points: (0, 0),
(

4, 3(4)
4
3

)
; Graph:

x

y

(−2,−2
10
3 + 2

4
3 )

(
4, 3(4)

4
3

)

−8

f(x) = 8x
1
3 + x

4
3

7. D = R − {2} = (−∞, 2) ∪ (2,∞); x-int=0; y-int=0; Vertical asymptote: x = 2; Increasing on:
(−∞, 0)∪(4,∞); Decreasing on (0, 2)∪(2,∞); Relative maximum: f(0) = 0; Relative minimum:
f(4) = 8, , Concave upward on (2,∞); Concave downward on (−∞, 2); No inflection points;
Graph:

x

y

(4, 8)
f(x) =

x2

(x− 2)

x = 2
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8. 0 9. 5
10. −

√
5

2

11. −∞

12. Vertical asymptote: x = 2, Horizontal asymptote: y = 2

13. Vertical asymptote: t = −3

2
, Horizontal asymptotes: y = −1, y = 1

14. Vertical length in diagram is 30 m and horizontal length is
100

3
m; lot area=2560 m2

15. Brick side is 10 m and exclusively fence side is 25 m

16. Maximal area occurs when Width=Circle diameter=
20

4 + π
m and Height=

10

4 + π
m (i.e. half the

width).

Exercise 5-1 (page 119)

1. Both F1 and F2 differentiate to x3. As this problem suggests, any two antiderivatives of a
function differ at most by a constant.

2. F (x) = x3 − 5

2
x2 + 6x+ C

3. F (x) =
1

2
x2 − 4

x
+ C

4. G(t) =
2

3
t
3
2 + 4t

1
2 + C

5. H(x) =
3

5
x

5
3 − 4

7
x7 + πx+ C

6. F (θ) = 2 sin θ + cos θ + tan θ + C

7. f(x) =
1

10
x5 − 5

3
x3 +

3

2
x2 + Cx+D

8. f(t) =
4

15
t
5
2 + t3 − 5

3
t+

7

5

9. f(θ) = −3 sin θ − cos θ +
5

2
θ2 + 2θ + 4

10. If f ′′′(x) = 0, then f ′′(x) = C where C is a real constant. If C is non-zero then f has the same
concavity everywhere, while if C = 0 then f ′′(x) = 0 implies f(x) = Dx + E so f is linear and
hence has no point of inflection.

Exercise 5-2 (page 123)

1.
41

4

2. 60

3.
1

n3

(
2n3 + 3n2 + n

6
+ n

)
=

2n2 + 3n+ 7

6n2

4.
2n3 + 3n2 + n

6
− 3n2 + 3n

2
=
n3 − 3n2 − 4n

3
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Exercise 5-3 (page 128)

1. (a) Sn =
3

n

n∑
i=1

f

(
1 +

3i

n

)
=

n∑
i=1

(
9

n
+

27i

n2
+

54i2

n3

)
=

81

2
+

81

2n
+

9

n2

(b) A = lim
n→∞

Sn =
81

2

Exercise 5-4 (page 132)

1. (a) i. −6

ii. 4

(b) i. Increasing on (−6,−5) ∪ (0, 5)

ii. Decreasing on (−5, 0) ∪ (5, 6)

2. 6

3. 30

4. −3

5.
7

2

6. Notice that the area can be viewed as the quarter of a circle:

0
x

y

−r

Then the integral is
1

4

(
πr2
)
. (Since the area is above the x-axis the integral is positive.)

7.

∫ 9

3

f(x) dx

8. Sn =
3

n

(
27n4 + 54n3 + 27n2

4n3
+ n

)
=

93n2 + 162n+ 81

4n2

and so

∫ 3

0

(
x3 + 1

)
dx = lim

n→∞
Sn =

93

4
.

9. Sn = b3
(

1

3
+

1

2n
+

1

6n2

)
and so

∫ b

0

x2 dx = lim
n→∞

Sn =
b3

3
.

Exercise 5-5 (page 134)

1.
dF

dx
=
√
x3 + 2x+ 1

2. h′(x) = 4x3
√
x12 + 2x4 + 1

3. g′(x) = −
[
cos
(
x3
)]

4. Noting that H(x) =
∫ 0

2x
3
√
t3 + 1 dt+

∫ 3x

0
3
√
t3 + 1 dt = −

∫ 2x

0
3
√
t3 + 1 dt+

∫ 3x

0
3
√
t3 + 1 dt, one gets

H ′(x) = −2 3
√

8x3 + 1 + 3 3
√

27x3 + 1
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5. f ′(x) =
2√
π
e−(x3)2

(
3x2
)

=
6x2

√
π
e−x

6

(Use the Chain Rule and the Fundamental Theorem of

Calculus.)

6. (x, y) =
(

3
2 km, 7

16 km
)

Exercise 5-6 (page 136)

1.
44

3

2. −14

3

3. 2

4.
7

6

5. 0

6.
13

2

7. The Fundamental Theorem of Calculus is not applicable here because the integrand 1
x2 is dis-

continuous on [−1, 1]. The area under the curve (i.e. the integral) in fact diverges to +∞ . To
show that requires a consideration of improper integrals.

Exercise 5-7 (page 138)

1. The Fundamental Theorem of Calculus shows that the definite integral
∫ b
a
f(x) dx is, assuming

the conditions of the theorem are met, intimately connected to the antiderivative of f by the

relation
∫ b
a
f(x) dx = F (b)− F (a) where F is an antiderivative of f . Thus in many cases finding

a definite integral is a two-step process where first one finds an antiderivative of f and then
secondly takes the difference of that function evaluated at the limits of integration. It is nat-
ural, therefore, to generally write the answer to the first step, namely the antiderivative of f ,
symbolically as

∫
f(x) dx. (The notation is further convenient because it embeds the function

we are antidifferentiating directly in the symbol in the same way we write df
dx abstractly for the

derivative of f .)

2.
x4

4
− 3x5

5
− 6x+ C

3. 4x
1
2 +

2

3
x

3
2 + C

4. − csc θ + C

5.

∫ (
tan2 x+ 1

)
dx =

∫
sec2 x dx = tanx+ C

6. The equation states that the derivative of y is x2 + 9 so y must be the general form of the
antiderivative of x2 + 9 which is just its indefinite integral:

y =

∫ (
x2 + 9

)
dx =

1

3
x3 + 9x+ C

The general solution for any differential equation of the form y′ = f(x) is similarly y =
∫
f(x) dx .
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Exercise 5-8 (page 142)

1. − 1

12

(
x3 + 3x2 + 4

)−4
+ C

2.
1

3

(
5x2 + 2x

) 3
2 + C

3. 2 sin(
√
t) + 1

4 t
4 + C

4. −2

3
(3− sin θ)

3
2 + C

5.
1

40
(4x+ 1)

5
2 − 1

24
(4x+ 1)

3
2 + C

6.
1

2
tan

(
2x− π

3

)
+ C

7. Using u = x4 + 9, integral is =

∫ 25

9

u
1
2
du

4
=

49

3

8. Using u = tan θ, integral is =

∫ 1

0

u4 du =
1

5

9. Breaking the integral into three separate integrals (one per term) and using u = 1 − x on the

last one that integral equals =
∫ 0

1
u5(−du) = 1

6 . Combining this with the definite integral of

the first two terms gives the final answer 5
3 . Alternatively, one can find the indefinite integral

of the third term (i.e. substitute back to x) to get the antiderivative of the entire integrand as
x+ 1

2x
2 − 1

6 (1− x)6 + C and evaluate that at the original limits of x.

10. Using u = 2x2 + 1, integral is =

∫ 19

3

u−2 du

4
=

4

57

11. Using u = cos t, integral is =

∫ 1
2

1√
2

u−
2
3 (−du) = 3

(
1
6
√

2
− 1

3
√

2

)

12. Using u =
2πt

T
, integral is =

∫ π
3

0

cos(u)
T du

2π
=

√
3T

4π

Exercise 5-9 (page 143)

1.
1

4
x4 +

2

3
x

3
2 +

1

x
+ 5x+ C

2.
1

7
x7 + x4 + 4x+ C

3.
8

5
x

5
2 + 2x2 +

2

3
x

3
2 + C

4. sin θ + tan θ + C

5.
1

6

(
x3 + 4

)6
+ C

6.
1

11
(sin θ + 3)

11
+ C

7.
6

7

(√
t+ 7

) 7
3

+ C
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8.
16806

10

9.
5

216

10.
1

2

11. 0 Note that since sine and tangent are odd, the integrand itself is odd. Since the limits are ±a,
the integral vanishes.

Exercise 5-10 (page 147)

1.
39

2
units2

2. 13 units2

3.
32

3
unit2

4.
32

3
unit2

5.
1

6
unit2

6. 3 unit2

7.
16

3
units2

Exercise 5-11 (page 149)

1. (a)

∫ 1

0

v(t) dt =
2

π
cm

(b)

∫ 2

1

v(t) dt = − 2

π
cm

(c) 0 cm (The particle is back where it started after 2 seconds.)

2.
8750

9
gigalitres

Exercise 5-12 (page 152)

2. y = 3 cos(2t) +
5

2
sin(2t)

3. y =
2

3
x

3
2 − cscx+ C

4. x(t) =
1

168
(2t+ 3)7 + Ct+D

5. y = x2 − cosx+ 2
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Chapter 5 Review Exercises (page 153)

1. F (x) =
5

8
x8/5 + 8x1/2 +

1

4
x4 + 10x+ C

2. G(x) = −x−1/2 − 5

2x
− 1

4x2
+ C

3. F (θ) = −3 cos θ + 5 sin θ +
1

4
θ4 + θ + C

4. G(θ) = 2 sec θ − 2 sin θ + tan θ + C

5. f(x) =
4

15
x5/2 +

1

12
x4 − 3x2 + Cx+D

6. f(t) =
9

2
t8/3 − 1

2
t3 − 5

2
t2 − 13

2
t+ 6

7. f(θ) = −5 sin θ + 4 cos θ + 5θ2 + 7θ − 17

8.
1

45

(
x5 + 3

)9
+ C

9.
1

12
[tan(2θ) + 1]

6
+ C

10.
15

8

(
t2/5 − 4

)4/3

+ C

11. −96

7

12.
1

15

(√
2

8
+ 1

)

13.
π

6

14.
32

3

15.
27

20

16.
64

3

17. y = − 3

x
+

1

4
x4 + C

18. y = 2 sinx+ 3

Exercise A-1 (page 161)

1. (−∞,−1) ∪ (7,∞) = {x ∈ R |x < −1 or x > 7}

2. (−3,−1) ∪ [1/2,∞) = {x ∈ R | − 3 < x < −1 or x ≥ 1/2}

3. (2, 5) ∪ (7,∞) = {x ∈ R | 2 < x < 5 or x > 7}
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Exercise B-1 (page 170)

1.
{π

6
+ 2nπ | n an integer

}
∪
{

11π

6
+ 2nπ | n an integer

}

2.

{
2π

3
+ 2nπ | n an integer

}
∪
{

4π

3
+ 2nπ | n an integer

}
3.
{π

6
+
nπ

2
| n an integer

}
∪
{π

3
+
nπ

2
| n an integer

}
Note that in [0, 2π) there are eight angle solutions, namely

{
π

6
,
π

3
,

2π

3
,

5π

6
,

7π

6
,

4π

3
,

5π

3
,

11π

6

}
.

4.
{π

4
+ 2nπ | n ∈ Z

}
∪
{

5π

4
+ 2nπ | n ∈ Z

}
∪ {0 + 2nπ | n ∈ Z} ∪ {π + 2nπ | n ∈ Z}

=
{π

4
+ nπ | n ∈ Z

}
∪ {nπ | n ∈ Z}
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Differentiation

Definition: For a given function f(x) the derivative function is given by

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

Table of Derivatives

1.
d

dx
(c) = 0

2.
d

dx
(xn) = nxn−1 (Power Rule)

3.
d

dx
(sinx) = cosx

4.
d

dx
(cosx) = − sinx

5.
d

dx
(tanx) = sec2 x

6.
d

dx
(cscx) = − cscx cotx

7.
d

dx
(secx) = secx tanx

8.
d

dx
(cotx) = − csc2 x

9.
d

dx
(cf) = c

df

dx

10.
d

dx
(f ± g) =

df

dx
± dg

dx

11.
d

dx
(fg) =

df

dx
g + f

dg

dx
(Product Rule)

12.
d

dx

(
f

g

)
=

df
dxg − f

dg
dx

g2
(Quotient Rule)

13.
d

dx
[f(x)]

n
= n [f(x)]

n−1
f ′(x) (General Power Rule)

14.
d

dx
f(g(x)) = f ′ (g(x)) · g′(x) (Chain Rule)

Here c and n are constants, f and g are functions, and primes (f ′, g′) denote differentiation.
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Integration

The Fundamental Theorem of Calculus (Antiderivative Form):

If f is continuous on [a, b] and F is any antiderivative of f (so F ′ = f) then∫ b

a

f(x) dx = F (b)− F (a) .

Definition: If F (x) is an antiderivative of f , so F ′(x) = f(x), then the indefinite integral of f(x)
is ∫

f(x) dx = F (x) + C

Table of Indefinite Integrals

1.

∫
xn dx =

1

n+ 1
xn+1 + C (n 6= −1)

2.

∫
cosx dx = sinx+ C

3.

∫
sinx dx = − cosx+ C

4.

∫
sec2 x dx = tanx+ C

5.

∫
secx tanx dx = secx+ C

6.

∫
csc2 x dx = − cotx+ C

7.

∫
cscx cotx dx = − cscx+ C

8.

∫
cf(x) dx = c

∫
f(x) dx

9.

∫
[f(x)± g(x)] dx =

∫
f(x) dx±

∫
g(x) dx

Substitution Rule (Indefinite Integrals): Suppose u = g(x) is a differentiable function whose
range of values is an interval I upon which a further function f is continuous, then∫

f(g(x))g′(x) dx =

∫
f(u) du ,

where du = g′(x)dx and the right hand integral is to be evaluated at u = g(x) after integration.

Substitution Rule (Definite Integrals): Suppose u = g(x) is a differentiable function whose
derivative g′ is continuous on [a, b] and a further function f is continuous on the range of u = g(x)
(evaluated on [a, b]), then ∫ b

a

f(g(x))g′(x) dx =

∫ g(b)

g(a)

f(u) du .
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Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other func-
tional and useful document “free” in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the au-
thor and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual work, regardless
of subject matter or whether it is published as a printed book. We recommend
this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that con-
tains a notice placed by the copyright holder saying it can be distributed under
the terms of this License. Such a notice grants a world-wide, royalty-free license,
unlimited in duration, to use that work under the conditions stated herein. The
“Document”, below, refers to any such manual or work. Any member of the pub-
lic is a licensee, and is addressed as “you”. You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or authors
of the Document to the Document’s overall subject (or to related matters) and
contains nothing that could fall directly within that overall subject. (Thus, if
the Document is in part a textbook of mathematics, a Secondary Section may
not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public, that
is suitable for revising the document straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters
or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent
if used for any substantial amount of text. A copy that is not “Transparent” is
called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII with-
out markup, Texinfo input format, LaTeX input format, SGML or XML using a
publicly available DTD, and standard-conforming simple HTML, PostScript or
PDF designed for human modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include proprietary formats that
can be read and edited only by proprietary word processors, SGML or XML
for which the DTD and/or processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title page
as such, “Title Page” means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the
Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ stands for a specific sec-
tion name mentioned below, such as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To “Preserve the Title” of such a section
when you modify the Document means that it remains a section “Entitled XYZ”
according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices, and
the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a computer-network
location from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document,
free of added material. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Docu-
ment well before redistributing any large number of copies, to give them a chance
to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to

the other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving

the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it

an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section Entitled
“History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the Doc-
ument itself, or if the original publisher of the version it refers to gives
permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve
the Title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.



If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document,
you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains noth-
ing but endorsements of your Modified Version by various parties—for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their Warranty
Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make the
title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in
the various original documents, forming one section Entitled “History”; likewise
combine any sections Entitled “Acknowledgements”, and any sections Entitled
“Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License in the
various documents with a single copy that is included in the collection, provided
that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the copyright resulting from the compila-
tion is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in
electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of section 4. Replacing Invariant Sec-
tions with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation
of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or
a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”,
or “History”, the requirement (section 4) to Preserve its Title (section 1) will
typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, or distribute it is void, and will automatically terminate your rights
under this License.

However, if you cease all violation of this License, then your license from a par-
ticular copyright holder is reinstated (a) provisionally, unless and until the copy-
right holder explicitly and finally terminates your license, and (b) permanently, if
the copyright holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated per-
manently if the copyright holder notifies you of the violation by some reasonable
means, this is the first time you have received notice of violation of this License
(for any work) from that copyright holder, and you cure the violation prior to 30
days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses
of parties who have received copies or rights from you under this License. If your
rights have been terminated and not permanently reinstated, receipt of a copy of
some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS
LICENSE

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems
or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License “or any
later version” applies to it, you have the option of following the terms and condi-
tions either of that specified version or of any later version that has been published
(not as a draft) by the Free Software Foundation. If the Document does not spec-
ify a version number of this License, you may choose any version ever published
(not as a draft) by the Free Software Foundation. If the Document specifies that
a proxy can decide which future versions of this License can be used, that proxy’s
public statement of acceptance of a version permanently authorizes you to choose
that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World
Wide Web server that publishes copyrightable works and also provides prominent
facilities for anybody to edit those works. A public wiki that anybody can edit is
an example of such a server. A “Massive Multiauthor Collaboration” (or “MMC”)
contained in the site means any set of copyrightable works thus published on the
MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 li-
cense published by Creative Commons Corporation, a not-for-profit corporation
with a principal place of business in San Francisco, California, as well as future
copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part,
as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and
if all works that were first published under this License somewhere other than
this MMC, and subsequently incorporated in whole or in part into the MMC, (1)
had no cover texts or invariant sections, and (2) were thus incorporated prior to
November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009, provided
the MMC is eligible for relicensing.

ADDENDUM: How to use this License for
your documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices just
after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.3 or any later ver-
sion published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the section entitled “GNU Free Docu-
mentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, re-
place the “with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts be-
ing LIST.

If you have Invariant Sections without Cover Texts, or some other combination
of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software li-
cense, such as the GNU General Public License, to permit their use in free soft-
ware.
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