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2 1.1 Equations

1.1 Equations

Definition: An equation is two mathematical expressions joined with an equal sign.

Example 1-1

The equation
y2 = 1 + x

is composed of the expressions y2 and 1 + x.

When an equation involves one or more variables (like x and y here) equality will usually hold for only
certain values of the variables. These particular values are called the solutions of the equation. As
an example the pair of values x = 0, y = −1, or, more simply (x, y) = (0,−1), is one solution to the
previous equation. Solving an equation is the act of finding the solutions of it. If we plotted points for
all the solutions to the previous equation in the Cartesian coordinate system we would see these form a
curve (a parabola).

We are perhaps more familiar with an equation that represent a (straight) line, like

y = −1

2
x− 1

Recalling the slope-intercept general form for a line, y = mx+b, we see that the constants are m = −1/2
and b = −1 for the slope and intercept of the line respectively. This latter equation is an example of a
linear equation which we will define precisely shortly.

If we graphed the curve y2 = x+ 1, the point (0,−1), and the line y = − 1
2x− 1, we would see that the

line is actually a tangent line to the curve at the point (0,−1) as it just touches the curve at (0,−1)
without crossing it. One observes that if we were only interested in the parabola at points very close to
the point (0,−1), the straight line determined by the linear equation would approximate the curve
quite well.

y

x

y2 = 1 + x

y = −1
2
x− 1

(0,−1)

As such, near a point on a curve that might arise from some arbitrary equation involving two variables
there is a line which approximates it well and that line is represented by a linear equation.

If we would introduce a further variable (like z) into our original equation the triplets (x, y, z) that
satisfy it would, in general, generate a surface in three dimensions. For example the points of a sphere
of radius r = 5 centred on the origin satisfy the equation

x2 + y2 + z2 = 25 .
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Near one of the points on that surface we could approximate the surface by a tangent plane. As an
example the spherical Earth locally at a point P is approximately a flat plane.

A plane, in turn, we will see can be represented algebraically by the solutions of a linear equation in
three variables. As such, an understanding of these linear algebraic structures, and, to the extent we
can visualize them, their graphs, will provide us with useful insights and approximations for more
general equations.
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1.2 Equations of a Line

A straight line in the x-y plane can be characterized in several ways. The following are common forms
of a linear equation in two variables. Which of the “recipes” to use depends on what information one
has regarding the line.

The slope–intercept form of a line is used when the y–intercept b is known as well as its direction,
characterized by the slope m.1 It has the familiar form:

y = mx+ b

y

x

∆x
∆y

m = ∆y
∆x

b

The point–slope form of an equation is used in the more general case when one still knows the slope,
m, but now an arbitrary point (x1, y1) on the line. It is given by

y − y1 = m(x− x1)

y

x

(x1, y1)

∆x
∆y

m = ∆y
∆x

In the event two points (x1, y1) and (x2, y2) on the line are known rather than the slope one can use
the two point form for a line:

y − y1 =
y2 − y1

x2 − x1
(x− x1)

y

x

(x1, y1)

(x2, y2)

which arises from the point–slope form by noting that m = ∆y
∆x = y2−y1

x2−x1
. None of the previous three

line equations can represent vertical lines.

If one knows the x-intercept a of a line in addition to its y-intercept b the two intercept form is just

x

a
+
y

b
= 1

y

xa

b

1One prefers the y–intercept b over the x–intercept a (where the line crosses the x–axis), because any line that can be
written as a function y = f(x) can always be written in the form y = mx+ b. The horizontal line y = 3, which is a valid
function, has no x-intercept.
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since clearly when x = 0 one has y = b and when y = 0 one has x = a . This two intercept form cannot,
however, represent lines that lack an intercept (either x or y), namely horizontal and vertical lines.

The standard form of a line is given by

a1x+ a2y = b

where a1, a2, and b are constants with a1 and a2 not both zero. While geometrically the constants do
not have an immediate meaning like the previous equations, the standard form is able to represent all
possible lines in the plane.2 One can always rearrange it into one of the other forms to interpret it
geometrically. Alternatively substitute any two values of x and evaluate (solve for) their y-coordinates
to establish two points on the line for graphing.

Example 1-2

Find the standard form of the equation of the line going through points (1, 3) and (−2, 9) .

Solution:
Since we are given two points, use the two point form with (x1, y1) = (1, 3) and (x2, y2) = (−2, 9) to
get

y − 3 =
9− 3

−2− 1
(x− 1)

which simplifies to
y − 3 = −2(x− 1)

Expanding the right hand side to get y − 3 = −2x+ 2 and isolating the variables on the left gives
the standard form

2x+ y = 5 .

One can check that the points (1, 3) and (−2, 9) satisfy the equation.

Example 1-3

Convert the line with standard form 6x− y = 2 into two intercept form and sketch the line.

Solution:
The two intercept form x/a+ y/b = 1 requires a 1 on the right hand side so dividing 6x− y = 2 by
two gives

3x− y

2
= 1 .

Noting that multiplying by 3 in the first term is the same as dividing by its reciprocal 1/3 and
bringing the -1 into the denominator of the second term gives the two intercept form

x

1/3
+

y

−2
= 1 .

with x-intercept a = 1/3 and y-intercept b = −2 . Plotting the points (1/3, 0) and (0,−2) and
joining them with the straight line gives the following graph.

x

y

1
3

−2

2It will be shown later that constants a1 and a2 can be interpreted in terms of the normal direction to the line.
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1.3 Systems of Linear Equations

The equation of a line, a1x+ a2y = b is a linear equation for 2 variables, x and y. More generally we
have the following.

Definition: A linear equation in n variables x1, x2, . . . , xn is an equation that can be written in
the form

a1x1 + a2x2 + . . .+ anxn = b

where the ai are the (constant) coefficients and b is the constant term.

Note that one or more of the constants in a linear equation may be zero.

Definition: A solution of the linear equation a1x1 + a2x2 + . . .+ anxn = b is a sequence of numbers
(t1, t2, . . . , tn) such that the substitution x1 = t1, x2 = t2, . . .xn = tn into the equation makes it
true.

Example 1-4

1. For 3x1 + 2x2 = 5, we have x1 = 3, x2 = −2 as a solution and x1 = −5 and x2 = 10 as another
solution as can be confirmed by direct substitution into the equation.

2. For 2x+ 3y − 2z = 2 we have x = 2, y = 2, and z = 4 as a solution.

Definition: Linear equation a1x1 + a2x2 + . . . + anxn = b is called homogeneous if b = 0 and
non-homogeneous otherwise.

Example 1-5

1. 2x− 3y = 0 is homogeneous

2. −2x1 + 3x2 − x3 = 5 is non-homogeneous.

Definition: A system of linear equations (or linear system) is a finite set of two or more linear
equations involving the same set of variables called the unknowns.

Definition: A solution of a linear system involving n unknowns is a sequence of numbers (t1, t2, . . . , tn)
that is simultaneously a solution of every linear equation in the system.

Example 1-6

The equations
5x+ y = 3
2x− y = 4

form a linear system of two equations in two unknowns. x = 1, y = −2 is a solution to the system.
Equivalently we may write the solution as (x, y) = (1,−2) .
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1.3.1 Geometrical Interpretation of the Solution

The solution of a linear system with two equations in two dimensions has a convenient geometrical
interpretation. Suppose we have such a system of two equations in two unknowns:

a1x+ b1y = c1
a2x+ b2y = c2

Since each linear equation separately represents a line in the plane, a solution x, y of the system must
be any point (x, y) that geometrically lies on both lines. Thus a unique solution occurs if the lines
are not parallel since they then intersect at a single point. The system has no solution if the lines are
parallel (equal slopes) but do not overlap. The system has infinitely many solutions if the two lines are
parallel and do overlap (i.e. are coincident).

y

x

l1

l2

lines not parallel

y

x

l1

l2

different parallel lines

y

x

l1 = l2

coincident parallel lines

In Example 1-6 the solution is unique as the lines are not parallel and intersect only at the point (1,−2).

1.3.2 Consistent and Homogeneous Linear Systems

Definition: A linear system which has at least one solution is called consistent. This means that the
system will have at least one solution. A system which has no solution is called inconsistent.

Example 1-7

1. The system

{
x− 3y = 2

2x− 6y = 2
is inconsistent because there are no solutions to this system.

To see this algebraically note the left side of the second equation is double the left side of
the first but the right sides are equal. If, for given x and y, the left side is zero then this is
not a solution. If, for given x and y, the left sides are non-zero then both must be so with
one being double the other which contradicts them being equal as required by the right sides.
Geometrically, writing the equations in point-slope form shows they both have slope m = 1/3
so they are parallel but a solution to the first, such as (x, y) = (0,−2/3), is not a solution of
the second, so the lines do not overlap.

2. The system

{
y − x = 1

2y + x = 1
is consistent because it has at least one solution, x = −1/3, y = 2/3

which can be verified by substitution. Geometrically, writing the lines in point-slope form
shows they have slopes m1 = 1 and m2 = −1/2 respectively which are not equal so the lines
are not parallel. Since they lie in the plane they intersect at a point, in fact (−1/3, 2/3), which
is a solution of the system.



8 1.3 Systems of Linear Equations

Definition: A homogeneous system is a linear system in which every linear equation is homogeneous
(i.e. right-hand side constant terms are all zero). A non-homogeneous system is a system in
which at least one linear equation is non-homogeneous.

Example 1-8

The system

{
x+ y = 0

2x− 4y = 0
is homogeneous.

Every homogeneous system is consistent since setting all unknowns equal zero (x = 0, y = 0 in the
previous example) will be a solution to the linear system.

Definition: If the number of equations in a linear system equals the number of unknowns the system is
called determined. If the number of equations is less than the number of unknowns the system
is underdetermined. If the number of equations exceeds the number of unknowns the system
is overdetermined.

Example 1-9

Describe the following systems of linear equations:

1.

3x+ 2z = 7

x− 4y − 4z = 3

3x+ 3y + 8z = 0

There are 3 equations with 3 unknowns, thus the system is determined. It is non-homogeneous
since the right hand side is not identically zero.

2.

−x+ 2z + w = 0

2x+ 3y − 5z + w = 0

z − 2w = 0

There are 3 equations with 4 unknowns, therefore the system is underdetermined. It is
homogeneous since the right hand side is identically zero and so also a consistent system as
(x, y, z, w) = (0, 0, 0, 0) will be at least one solution.

3.

2x− y = 2

−x+ y = 7

−5x+ 6y = −4

There are 3 equations with 2 unknowns, therefore the system is overdetermined. It is also
non-homogeneous.
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1.4 Parameterization of Solutions

When a linear system has an infinite number of solutions, these can be conveniently described by the
introduction of one or more parameters. These are independent variables in the solution description
which can be assigned any numerical values to produce one of the solutions to the linear system.

Example 1-10

Show that the following parametric form

x = 2s+ 1

y = 1− s
z = s

where parameter s is any real number, is a solution to the underdetermined linear system

2x+ 3y − z = 5

−x+ 2z = −1

Solution:
We must show that x = 2s+ 1, y = 1− s, z = s satisfies each linear equation in the system for any
value of s. Direct substitution in the left-hand side of the first equation gives

2x+ 3y − z = 2(2s+ 1) + 3(1− s)− s
= 4s+ 2 + 3− 3s− s
= 5

as required. Substitution into the second linear equation gives

−x+ 2z = −(2s+ 1) + 2s

= −2s− 1 + 2s

= −1

showing that it is also satisfied. Choosing a particular value of s in the parametric form (such as
s = 2) would provide (x, y, z) = (5,−1, 2), one of the infinitely many solutions of the system.

We will see that any consistent linear system with more than one solution can have its general solution
described, using enough parameters, in a parametric form. Such a parametric solution is not unique
and can be written in several ways. The reader may verify that

x = −2t+ 3

y = t

z = 1− t
for parameter t is also a parametric solution to the linear system in Example 1-10 .

We can interpret our parametric solution in the previous example geometrically. A linear equation in
three unknowns has the form

a1x+ a2y + a3z = b .

If at least one of the coefficients ai is non-zero we will see that its solutions (x, y, z) constitute a plane
in three-dimensional space. A solution of a linear system involving two equations in three unknowns
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requires geometrically that the solutions lie simultaneously on two planes. The intersection of two
planes that are not parallel is a line. Our first parametric solution, by finding the points generated by
evaluating it for all possible values of s, describes this line in three-dimensional space.

If we had a third equation in our linear system we would have had a determined system. We would
have expected typically a single solution since three planes (assuming each equation represents a plane)
typically intersect at a point. The line intersection of the first two planes will be cut at a single point
by the third plane.

If we had added a fourth equation forming an overdetermined system we typically would expect no
solution since if each equation represents a plane, the point that is the intersection of the first three
planes will not, in general, lie on the fourth.

So generally one expects that underdetermined systems have an infinite number of solutions, determined
systems have one solution and overdetermined systems have no solution. There are exceptions, however,
due to the fact that (as in a three dimensional example such as ours) some of the planes could be
parallel and, if so, either overlap or not. If they overlap then one could really have removed one of them
without affecting the system. If they don’t overlap then the system must be inconsistent. Also a linear
equation in our three dimensional example may not represent a plane, for instance, if all the coefficients
ai = 0. In that case if b = 0 such an equation could be removed as it produces no restriction on the
variables (0 = 0). If b 6= 0 then that equation has no solution (0 6= b) and hence the linear system
would be inconsistent. Other exceptions are also possible. As such we will have to come up with a
more systematic analysis of our linear systems. That said, if, for instance, the constants in our linear
system were generated completely at random our expectation on the nature of the solution set would
be based on a consideration of the number of equations and the number of unknowns.

As a final comment, the behaviour of linear equations gives us insight into the behaviour of arbitrary
equations. For instance, if we had a system of two non-linear equations in three unknowns (three
dimensions) each equation would represent more generally a surface, not a plane. However if a solution
exists (the surfaces intersect) then in the neighbourhood around that point the surfaces could typically
be approximated by their tangent planes which, as we have discussed, would intersect in a line. Now for
our surfaces as we move further away from our initial point we do not expect a straight line, but rather
a curve for the solution. So, for instance, two intersecting spherical surfaces will typically intersect
in a circle.3 In the case of having three equations in three unknowns we can again consider that in
the vicinity of a solution the surfaces will behave like three intersecting tangent planes. As such we
expect the solution to be typically isolated (a point) since the intersecting planes, generally speaking,
would have a unique solution. As an example, a third spherical surface would intersect the circular
intersection of the first two at isolated points. As such our expectation for general systems of equations
follows from the behaviour of linear ones. If the number of equations equals the number of unknowns
we expect, if solution exist, that they are isolated solutions. Having fewer equations than unknowns we
expect that if solutions exist that there will be an infinite number of them. Finally if we have more
equations than unknowns we expect no solutions.

3They could intersect at a point if they just touched each other. Note that the tangent planes in this case are also
exceptional as they are parallel and coincident.
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1.5 Elementary Methods for Solving Linear Systems

So far we have only checked that certain values are solutions to linear equations and systems. The
obvious question is how does one find these solutions. To solve a linear system involving few variables
there are several strategies that involve eliminating variables.

Example 1-11

Solve the linear system

5x+ y = 3

2x− y = 4

Solution:
One method to eliminate a variable is to add a suitable multiple of one equation to the other. In
this example simply adding both sides of the equation eliminates the y variable:

5x+ y + 2x− y = 3 + 4

7x = 7

x = 1

Substitution of x = 1 into the second original equation then gives

2(1)− y = 4

2− y = 4

−y = 2

y = −2

Thus x = 1 and y = −2 is a solution to the system.

A second method to solve the system is the method of substitution. Solving the first equation
for y gives y = 3− 5x. Substitution of 3− 5x for y in the second equation then gives

2x− (3− 5x) = 4

7x− 3 = 4

7x = 7

x = 1

Then substitution of x = 1 into y = 3− 5x gives y = 3− 5(1) = −2 as before.

One can easily check that (x, y) = (1,−2) solves the original system.

For a linear system with more variables and many non-zero constants like

x+ y + 2z = 9

2x+ 4y − 3z = 1

3x+ 6y − 5z = 0

we cannot easily eliminate the variables to obtain a solution. Thus we need to develop systematic
techniques to solve linear systems.
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2.1 Definition of a Matrix

Definition: A matrix is a rectangular array of numbers each of which is called an entry of the
matrix.

Example 2-1

A =

 2 1
−1 2

0 5

 B =

 3 2 −1
0 5 1
1 1 −2

 C =
[
5 1 0

]
D =


2
2
4
8



We can assign a name (A, B, etc.) to the matrix as shown. Each horizontal line of numbers is called a
row of the matrix; each vertical line of numbers is called a column. Any matrix consists of m rows
and n columns. Matrix A above has 3 rows and 2 columns. It is an example of a 3 × 2 (“three by
two”) matrix. These are the dimensions of the matrix. Matrix B is an example of a square matrix,
a matrix in which the number of columns equals the number of rows. We can refer to an entry of a
matrix by subscripts, row first then column. So for matrix A above, a21 = −1 . We will use upper case
letters to represent matrices as a whole and lower case letters for their entries. For a matrix A with
entries aij it is convenient to use the notation A = [aij ] .

Definition: A row matrix is a matrix of dimension 1 × n and a column matrix is a matrix of
dimension m× 1.

In Example 2-1 matrix C is a row matrix and matrix D is a column matrix.
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2.2 Linear Systems and Matrices

The general form (or standard form) of a linear system of m equations in n unknowns is:

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

...
am1x1 + am2x2 + . . .+ amnxn = bm

Note that here two indices are required to keep track of the coefficients; the first index indicates to
which equation the coefficient belongs, while the second index indicates of which variable it is the
coefficient.

The constants and unknowns can be organized into the following matrices:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn

 , X =


x1

x2

...
xn

 , B =


b1
b2
...
bm

 .

The m× n matrix A is called the coefficient matrix of the system, X is the matrix of unknowns and
B is the right-hand side of the system.1

Definition: The matrix which is made up of the coefficient matrix A and the right-hand side B is
called the augmented matrix of the system and is denoted by [A|B] . For a linear system of m
equations in n unknowns the augmented matrix is the m× (n+ 1) matrix:

[A|B] =


a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

...
...

...
am1 am2 . . . amn bm


Note that each equation of a linear system corresponds to a row of the augmented matrix and vice
versa.

Example 2-2

Derive the augmented matrix for the following linear system.

3x+ 2z = 7

x+ 4y − 4z = 3

2x+ 2y + 8z = 1

Solution:
We have the coefficient, unknown, and right-hand side matrices:

A =

 3 0 2
1 4 −4
3 3 8

 , X =

xy
z

 , B =

7
3
1

 ,

1Later we will show that a matrix multiplication operation can be introduced so that the linear system is reducible to
the matrix equation AX = B .
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so the augmented matrix is:

[A|B] =

3 0 2 7
1 4 −4 3
3 3 8 1

 .

Example 2-3

Write down the system of linear equations for the following augmented matrix.−1 0 2 1 −10
2 3 −5 4 8
0 0 1 −2 5


Solution:
Identifying the coefficient matrix A and the unknown matrix B we see we have the linear system of
three equations in four unknowns is given by

−x1 + 2x3 + x4 = −10

2x1 + 3x2 − 5x3 + 4x4 = 8

x3 − 2x4 = 5
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2.3 Row Echelon Form

Consider the linear system

2x+ 3y − 2z = −7

3y + 2z = 3

5z = 15

Many of the coefficients are zero. It is, equivalently

2x+ 3y − 2z = −7

0x+ 3y + 2z = 3

0x+ 0y + 5z = 15

and so its corresponding augmented matrix is therefore:2 3 −2 −7
0 3 2 3
0 0 5 1


A system of this type is easy to solve by a process called back-substitution. In back-substitution
we start by solving the last equation first for the final unknown. That result can then be used in the
second last equation to solve for the second last unknown, etc.

Example 2-4

Solve the linear system:

2x+ 3y − 2z = −7

3y + 2z = 3

5z = 15

Solution:
Solving the last equation first and using back-substitution gives:

• 5z = 15 =⇒ z = 3

• 3y + 2z = 3 =⇒ 3y + 2(3) = 3 =⇒ 3y = −3 =⇒ y = −1

• 2x+ 3y − 2z = −7 =⇒ 2x+ 3(−1)− 2(3) = −7 =⇒ 2x = 2 =⇒ x = 1

The solution is therefore
x = 1, y = −1, z = 3 .

An even simpler linear system to solve would have been

1x+
3

2
y − z = −7

2

0x+ 1y +
2

3
z = 1

0x+ 0y + 1z = 3

=⇒

 1 3
2 −1 − 7

2

0 1 2
3 1

0 0 1 3


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since, upon back-substitution there would be no division required. Finally an even easier linear system
would have the form:

1x+ 0y + 0z = 1

0x+ 1y + 0z = −1

0x+ 0y + 1z = 3

=⇒

 1 0 0 1
0 1 0 −1
0 0 1 3



Here finding the solution requires no calculation at all! Note that these last three linear systems are
equivalent in the sense that they all have the same solution. The facility with which a linear system in
these forms may be solved suggests that it would be desirable if for any linear system we could find an
equivalent linear system that had a similar arrangement of zeros and ones in its augmented matrix. We
now show how that may be done, commencing with suitable definitions.

Definition: Two linear systems with m equations in n unknowns are equivalent to each other if they
have the same solutions.

Definition: The leftmost, nonzero entry in a row of a matrix is called the leading entry or pivot.

Definition: A matrix is in row echelon form (REF) if:

1. All zero rows (i.e. rows consisting entirely of zeros) are at the bottom of the matrix.

2. All elements below a leading entry (pivot) are zero.

3. Each leading entry is to the right of the leading entries of all rows above it.

4. Each leading entry is equal to 1. Such an entry is called the leading 1.

Definition: A matrix is in reduced row echelon form (RREF) if it is in row echelon form and the
leading one is the only nonzero entry in its column.

Example 2-5

Determine if the matrices are in REF, RREF, or neither.

1.

A =

1 2 −4
0 1 −5
0 0 0

⇐ REF

2.

B =

1 0 3
0 1 4
0 0 0

⇐ RREF

3.

C =

2 1 0 0
0 1 0 0
1 0 1 0

⇐ Neither form

4.

D =

1 0 0 −2
0 1 0 5
0 0 1 −3

⇐ RREF

5.

E =

[
1 −7 5 5
0 1 3 2

]
⇐ REF

6.

F =

1 2 3
0 0 0
0 0 1

⇐ Neither form
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2.4 Elementary Row Operations

Performing one of the following three operations, called elementary row operations on a given
linear system gives an equivalent linear system.

1. Interchange two equations (or rows), Ri ↔ Rj .

2. Multiply an equation (row) by a nonzero number, Ri → cRi .

3. Add a multiple of one equation (row) to another equation (row), Ri → Ri + cRj .

Here R denotes a row of an augmented matrix and c represents a number.

Note: Every augmented matrix can be reduced to its row echelon form using elementary row operations.
This process is called Gaussian elimination. Every augmented matrix can be reduced to its reduced
row echelon form by a process called Gauss-Jordan elimination.

2.4.1 Steps in Gaussian Elimination

1. Locate the leftmost nonzero column in the augmented matrix. If the top entry of the column is
zero, interchange the top row with another so the top entry (call it a) is nonzero.

2. If a is not a leading 1 make it so by multiplying the row by 1/a .

3. Make all other entries in the column below the leading 1 equal zero by adding suitable multiples
of the first row to the remaining rows.

4. Consider the remaining matrix produced by ignoring the top row. Repeat steps 1–4 on that
matrix. If the remaining matrix has no rows the original matrix is now in row echelon form.

Note that once the matrix is in row echelon form the system may be solved as shown in the following
examples.

Example 2-6

Solve each linear system using Gaussian elimination.

1. From the end of the last chapter (unsolved):

x+ y + 2z = 9

2x+ 4y − 3z = 1

3x+ 6y − 5z = 0

Solution:
The augmented matrix for the system is

[A|B] =

1 1 2 9
2 4 −3 1
3 6 −5 0


Since the top left entry is already a leading 1, zero the 2 below it by adding -2 times row 1 to
row 2. (This is the same as subtracting 2 times row 1 from row 2.)

R2 → R2 + (−2)R1

1 1 2 9
0 2 −7 −17
3 6 −5 0


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Next zero the first entry in the third row by adding -3 times row 1 to row 3.

R3 → R3 − 3R1

1 1 2 9
0 2 −7 −17
0 3 −11 −27


To get a leading 1 in the second row, multiply the row by 1/2, or equivalently, divide the row
by 2.

R2 → 1
2R2

1 1 2 9
0 1 − 7

2 − 17
2

0 3 −11 −27


Zero the second entry in the third row by adding -3 times row 2 to row 3.

R3 → R3 − 3R2

1 1 2 9
0 1 − 7

2 − 17
2

0 0 − 1
2 − 3

2


Get a leading 1 in the third row by dividing the row by -1/2, or, equivalently, multiplying it
by -2.

R3 → −2R3

1 1 2 9
0 1 − 7

2 − 17
2

0 0 1 3


The linear system represented by the last augmented matrix is

x+ y + 2z = 9

y − 7

2
z = −17

2
z = 3

so back-substitution gives the following.

• z = 3

• y − 7
2z = − 17

2 =⇒ y − 7
2 (3) = − 17

2 =⇒ y = − 17
2 + 21

2 =⇒ y = 2

• x+ y + 2z = 9 =⇒ x+ 2 + 2(3) = 9 =⇒ x = 1

The solution is therefore x = 1, y = 2, z = 3 which is easily checked in the original system.

2.

x1 + x2 = 1

4x1 − x2 = −6

2x1 − 3x2 = 8

Solution:
The augmented matrix is

[A|B] =

1 1 1
4 −1 −6
2 −3 8


which may be put into row echelon form as follows:

R2 → R2 − 4R1

R3 → R3 − 2R1

1 1 1
0 −5 −10
0 −5 6

⇒ R2 → − 1
5R2

1 1 1
0 1 2
0 −5 6

⇒
R3 → R3 + 5R2

1 1 1
0 −5 −10
0 0 16


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The last augmented matrix presents a contradiction as its last equation is 0x1 + 0x2 = 16 or
simply 0 = 16 which is never true. There is therefore no solution to this system.

3.

w − x+ 2y − z = −1

2w + x− 2y − 2z = −2

−w + 2x− 4y + z = 1

3w − 3z = −3

Solution:

[A|B] =


1 −1 2 −1 −1
2 1 −2 −2 −2
−1 2 −4 1 1

3 0 0 −3 −3


⇓

R2 → R2 − 2R1

R3 → R3 +R1

R4 → R4 − 3R1


1 −1 2 −1 −1
0 3 −6 0 0
0 1 −2 0 0
0 3 −6 0 0


⇓

R2 → 1
3R2


1 −1 2 −1 −1
0 1 −2 0 0
0 1 −2 0 0
0 3 −6 0 0


⇓

R3 → R3 −R2

R4 → R4 − 3R2


1 −1 2 −1 −1
0 1 −2 0 0
0 0 0 0 0
0 0 0 0 0


The linear system corresponding to the row echelon form is then

w − x+ 2y − z = −1

x− 2y = 0

0 = 0

0 = 0

This system will have an infinite number of solutions. To characterize them we will introduce
parameters.

Definition: The variables that correspond to the leading entries of the row echelon form of an
augmented matrix are called the leading variables or dependent variables. The remaining
variables are called the free variables or independent variables.
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To solve a system of linear equations, set the free variables equal to parameters and use the row echelon
form with back-substitution to solve for the leading variables.

Example 2-7

Complete the solution to the Question 3 of Example 2-6 .

Solution:
The row echelon form found and corresponding linear system are


1 −1 2 −1 −1

0 1 −2 0 0
0 0 0 0 0
0 0 0 0 0

 ⇔

w − x+ 2y − z = −1

x− 2y = 0

0 = 0

0 = 0

.

The leading entries are circled and are found in the w and x variable columns. Thus w and x are
the dependent variables and y and z are the independent variables. So introduce two parameters
for the independent variables letting y = s and z = t . Next solve for the dependent variables in
terms of the parameters using back-substitution.

• x− 2y = 0 =⇒ x = 2y =⇒ x = 2s

• w − x+ 2y − z = −1 =⇒ w − 2s+ 2s− t = −1 =⇒ w = −1 + t

We can write the solution to the system as

w = −1 + t, x = 2s, y = s, z = t ,

where s and r are parameters taking on any numbers. We can also write the solution in the matrix
form: 

w
x
y
z

 =


−1 + t

2s
s
t

 .

2.4.2 Gaussian Elimination in Practice

Gaussian Elimination, as has been presented, is an algorithmic method for finding solutions to linear
systems and can be easily encoded into a computer program. However, as we saw in Question 1 of
Example 2-6 one can often get fractions in later row entries as one produces a leading 1. If working by
hand it is often easier to use the elementary row operations more liberally so that this may be avoided.
Such strategies include

• Swapping rows if there is a leading 1 already in a column, even if the top row leading entry is
nonzero.

• Zeroing leading entries in lower rows that are a multiple of a top row leading entry by subtracting
the appropriate multiple, before making the top row leading entry equal 1 .
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• Converting leading entries to 1 after the matrix is otherwise reduced, or never converting them
at all.

Example 2-8

Solve the linear system.

2x1 − x2 − x3 = 3

−6x1 + 6x2 + 5x3 = −3

4x1 + 4x2 + 7x3 = 3

Solution:
The augmented matrix for the system is: 2 −1 −1 3

−6 6 5 −3
4 4 7 3


Perform the row operations: 2 −1 −1 3
−6 6 5 −3

4 4 7 3

⇒ R2 → R2 + 3R1

R3 → R3 − 2R1

2 −1 −1 3
0 3 2 6
0 6 9 −3

⇒
R3 → R3 − 2R2

2 −1 −1 3
0 3 2 6
0 0 5 −15


At this stage one could get row echelon form by multiplying the rows by 1/3, 1/2 and 1/5 respectively
to get: 1 − 1

2 − 1
2

3
2

0 1 2
3 2

0 0 1 −3

 ,

but it is simpler just to do back-substitution on the previous matrix:

• 5x3 = −15 =⇒ x3 = −3

• 3x2 + 2x3 = 6 =⇒ 3x2 + 2(−3) = 6 =⇒ x2 = 4

• 2x1 − x2 − x3 = 3 =⇒ 2x1 − 4 + 3 = 3 =⇒ x1 = 2

So the solution is
x1 = 2, x2 = 4, x3 = −3 .

2.4.3 Gauss-Jordan Elimination

Gauss-Jordan elimination takes Gaussian elimination one further step to produce an augmented matrix
in reduced row echelon form. One does the following steps:

1. Perform Gaussian elimination to put the augmented matrix in row echelon form (REF).

2. Add suitable multiples of the last nonzero row to the rows above it to introduce zeros into them
above the leading 1 of this row.
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3. Consider the remaining matrix produced by ignoring the last nonzero row and any zero rows
beneath it, if any. Repeat steps 2–3 on that matrix. If the remaining matrix has no rows the
original matrix is now in reduced row echelon form (RREF).

Example 2-9

Solve the linear system using Gauss-Jordan elimination:

−y + 5z = 9

x+ y + 2z = 8

3x− 7y + 4z = 10

Solution:

[A|B] =

0 −1 5 9
1 1 2 8
3 −7 4 10


First put the augmented matrix in row echelon form:

R1 ↔ R2

1 1 2 8
0 −1 5 9
3 −7 4 10


⇓

R3 → R3 − 3R1

1 1 2 8
0 −1 5 9
0 −10 −2 −14


⇓

R3 → R3 − 10R2

1 1 2 8
0 −1 5 9
0 0 −52 −104


⇓

R2 → −R2

R3 → − 1
52R3

1 1 2 8
0 1 −5 −9
0 0 1 2

 (REF)

To achieve reduced row echelon form work from the bottom of the matrix upward, to get zeros above
any leading one.

⇓

R1 → R1 − 2R3

R2 → R2 + 5R3

1 1 0 4
0 1 0 1
0 0 1 2


⇓

R1 → R1 −R2

1 0 0 3
0 1 0 1
0 0 1 2

 (RREF)

The unique solution to the system is therefore

x = 3, y = 1, z = 2 .
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2.4.4 Interpreting the Reduced Row Echelon Form

Once the augmented matrix has been put in RREF by Gauss-Jordan elimination one proceeds as
follows:

1. If the last nonzero row of the matrix is of the form[
0 0 . . . 0 1

]
then the linear system has no solution.2

2. If not, assign parameters to any free (independent) variables and solve for the leading (dependent)
variables using the nonzero rows. If no such parameters are needed there is a unique solution,
otherwise one has infinitely many solutions.

Example 2-10

Find values of m such that the linear system

x+ y + z = 1

2x+ y + 4z = 3

2x+ 2y + 2m2z = 2m

has:

1. No solution

2. Infinitely many solutions

3. A unique solution

Solution:
The augmented matrix is:

[A|B] =

1 1 1 1
2 1 4 3
2 2 2m2 2m


The following matrix is equivalent:

R2 → R2 − 2R1

R3 → R3 − 2R1

1 1 1 1
0 −1 2 1
0 0 2m2 − 2 2m− 2


1. There is no solution if you have the contradiction 2m2 − 2 = 0 and 2m− 2 6= 0 in the last row.

Solving gives

2m2 − 2 = 0 =⇒ m2 − 1 = 0 =⇒ (m− 1)(m+ 1) = 0 =⇒ m = ±1

and
2m− 2 6= 0 =⇒ m− 1 6= 0 =⇒ m 6= 1

Thus m = ±1 and m 6= 1 for no solution. This implies m = −1 gives no solution.

2. There are an infinite number of solutions when the last row is 0=0 since then the number of
leading terms is less than the number of unknowns. We saw 2m2 − 2 = 0 =⇒ m = ±1.
Similarly 2m− 2 = 0 =⇒ m = 1. Thus we get an infinite number of solutions when m = 1.

2Note one can stop at REF if its last nonzero row indicates no solution.
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3. Finally a unique solution occurs the rest of the time, logically when m 6= 1 and m 6= −1. We
can see this directly by noting that when 2m2 − 2 6= 0 we would be able to divide row three in
the augmented matrix to get a leading 1, since m 6= ±1 =⇒ 2m2 − 2 6= 0 .

Note:

1. For a given linear system, the row echelon form generated by Gaussian elimination is not unique.
The reduced row echelon form generated by Gauss-Jordan elimination is however unique.

2. On a computer, Gaussian Elimination (finding REF and using back-substitution) is more efficient,
in general, than Gauss-Jordan elimination.

3. Terminology is not universal. Some consider matrices for which the leading entry is not equal to 1
to be in row echelon form. Some call Gaussian elimination what we have called Gauss-Jordan
elimination.

2.4.5 Rank of a Matrix

Characterization of the solutions of a linear system is simplified by the introduction of the rank of a
matrix. It can be shown that any REF and the RREF of a matrix A always have the same number of
nonzero rows allowing for the following definition.

Definition: The rank of a matrix A, rank(A), is the number of nonzero rows in the row echelon or
reduced row echelon form of A.

Example 2-11

Find the rank of A =

1 2 −5 2
2 −3 4 4
4 1 −6 8

 .

Solution:
Put the matrix A in REF form:

1 2 −5 2
2 −3 4 4
4 1 −6 8

⇒ R2 → R2 − 2R1

R3 → R3 − 4R1

1 2 −5 2
0 −7 14 0
0 −7 14 0

⇒ R2 → − 1
7R2

R3 → R3 −R2

1 2 −5 2
0 1 −2 0
0 0 0 0


Therefore rank(A) = 2.

Theorem 2-1: Consider a linear system of m equations in n unknowns, with coefficient matrix A and
right-hand side matrix B. If p is the rank of A and q is the rank of [A|B]. The linear system has:

1. No solution if p < q .

2. A unique solution if p = q = n .

3. Infinitely many solutions if p = q and p < n .
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Example 2-12

Suppose the augmented matrix of a linear system is given by

[A|B] =

1 0 0 2
0 1 0 3
0 0 x y

 .
For what values of x and y give does the system have
1. No solution? 2. Exactly one solution? 3. Infinitely many solutions?

Solution:
The original system has n = 3 unknowns. We consider the various ranks which occur of A and [A|B]
when either x or y or both are zero.

1. No solution ⇒ x = 0, y 6= 0 since then p = rank(A) = 2 < 3 = rank([A|B]) = q

2. Exactly one solution ⇒ x 6= 0 since then p = rank(A) = 3 = rank([A|B]) = q = n .

3. Infinitely many solutions ⇒ x = 0, y = 0 since then
p = rank(A) = 2 = rank([A|B]) = q < 3 = n .

Example 2-13

Consider the linear system AX = B, where:

A =

[
a b
c d

]
, B =

[
e
f

]
, a 6= 0

Determine conditions on the constants a, b, c, d, e, f so that:

1. rank(A) = 2 .

2. rank(A) = 1 but rank([A|B]) = 2 .

3. rank(A) and rank([A|B]) are both 1 .

Solution:
The augmented matrix is

[A|B] =

[
a b e
c d f

]
.

Since a 6= 0 perform the row operation R2 → R2 − c
aR1:[

a b e
0 d− bc

a f − ce
a

]

Then:

1. rank(A) = 2 =⇒ d− bc
a 6= 0 =⇒ ad− bc 6= 0

2. rank(A) = 1 =⇒ d− bc
a = 0 =⇒ ad− bc = 0 and

rank([A|B]) = 2 =⇒ f − ce
a 6= 0 =⇒ af − ce 6= 0

3. rank(A) = 1 =⇒ ad− bc = 0 and
rank([A|B]) = 1 =⇒ f − ce

a = 0 =⇒ af − ce = 0
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Note: The student may wish to consider the implications if a = 0 but some other element of A
(i.e. b, c, or d) is taken to be nonzero.

Theorem 2-1 has some useful corollaries. For a homogeneous system (B = 0) the last column of [A|B]
is zero so p = q and further the trivial solution (X = 0) is always a solution to the system. This gives
the corollary:

Corollary 1: A homogeneous linear system with m× n coefficient matrix A has:

1. A unique solution (trivial solution X = 0) if rank(A) = n .

2. Infinitely many solutions if rank(A) < n .

For coefficient matrix A we have p = rank(A) necessarily less than or equal to its number of rows,
which equals the number of equations m. Since for an underdetermined system (fewer equations m
than unknowns n), it follows then that p < n, and one has the following corollaries:

Corollary 2: An underdetermined linear system has no solution or infinitely many solutions.

Corollary 3: An underdetermined homogeneous linear system has infinitely many solutions.

Example 2-14

Without solving the system what can you say about the number of solution for the following systems?

1.

2x+ 2y + 4z = 0

w − y − 3z = 0

2w + 3x+ y + 2 = 0

Solution:
This is a homogeneous system with 3 equations in 4 unknowns and so underdetermined.
Therefore there are infinitely many solutions.

2.

x+ 2y + z + w = −7

2x+ 3y − z + 2w = 1

x− y − z − w = 3

Solution:
This is a non-homogeneous system with 3 equations in 4 unknowns and so underdetermined.
Therefore there are either no solutions or infinitely many solutions.
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2.5 Matrix Equality, Addition, and Subtraction

Definition: Two matrices are equal if they have the same dimensions and their corresponding entries
are equal.

Therefore A = B implies aij = bij for all indices i and j.

Example 2-15

Given the matrices:
A =

[
2 0
1 3

]
B =

[
8
4 0
1 12

4

]
We see that A = B since they are both 2× 2 matrices with equal corresponding entries.

Definition: Let A = [aij ] and B = [bij ] be matrices with the same dimensions. The sum of A and
B, written A+B, is the matrix obtained by adding corresponding entries of A and B. The
difference of A and B, written A−B, is obtained by subtracting corresponding entries from
entry A by entry B. In symbols:

A+B = [aij ] + [bij ] = [aij + bij ]

A−B = [aij ]− [bij ] = [aij − bij ]
Example 2-16

If
A =

[
1 0 −1
2 3 8

]
B =

[
2 5 −1
0 1 3

]
,

then A+B and A−B are, respectively,

A+B =

[
(1 + 2) (0 + 5) (−1− 1)
(2 + 0) (3 + 1) (8 + 3)

]
=

[
3 5 −2
2 4 11

]

A−B =

[
(1− 2) (0− 5) (−1 + 1)
(2− 0) (3− 1) (8− 3)

]
=

[
−1 −5 0

2 2 5

]
.

Note that A+B and A−B will not be defined if the matrices do not have the same dimension.

Example 2-17

For the matrices

A =

[
2 5
3 1

]
B =

1 −1
0 5
2 3


the sum A + B and difference A − B are not possible since A is a 2 × 2 matrix and B is a 3 × 2
matrix.

Note A+B = B +A when the sum exists.

Definition: A zero matrix, denoted by 0 , is an m× n matrix where all entries are zero.

One may write 0mn to make the dimension explicit. Clearly A+ 0 = A for the zero matrix with same
dimension as A.
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2.6 Scalar Multiplication

Definition: Let A = [aij ] be a matrix and c be a number (a scalar) then the scalar product of c
times A, written cA, is the matrix obtained by multiplying each entry of A by c. In symbols one
has

cA = [caij ] .

Example 2-18

If

A =

 2 1
−1 5

3 0

 , c = 3

then the scalar product is

cA = 3A =

 (3)(2) (3)(1)
(3)(−1) (3)(5)
(3)(3) (3)(0)

 =

 6 3
−3 15

9 0

 .

Definition: The negative of matrix A = [aij ], written -A, is defined to be (−1)A .

Clearly −A = [−aij ] and −A+A = 0 .

One can combine scalar multiplication and matrix addition and subtraction to form new matrices.

Example 2-19

Let

A =

−1 3 2
0 1 −1
2 1 4

 B =

 1 −1 0
2 5 1
−1 1 −2


Find A+ 2B and 3A−B .

Solution:

A+ 2B =

−1 3 2
0 1 −1
2 1 4

+

 2 −2 0
4 10 2
−2 2 −4

 =

1 1 2
4 11 1
0 3 0


3A−B =

−3 9 6
0 3 −3
6 3 12

−
 1 −1 0

2 5 1
−1 1 −2

 =

−4 10 6
−2 −2 −4

7 2 14


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2.7 Solutions of Homogeneous Linear Systems

One can use scalar multiplication and addition to represent solutions to a linear system.

Example 2-20

Find the solution of the homogeneous linear system

x3 + 2x4 − x5 = 0

x4 − x5 = 0

x3 + 3x4 − 2x5 = 0

2x1 + 4x2 + x3 + 7x4 = 0

if its augmented matrix reduces to 
1 2 0 0 3 0
0 0 1 0 1 0
0 0 0 1 −1 0
0 0 0 0 0 0

 ,
and write your solution using matrix addition and the scalar product.

Solution:
The RREF augmented matrix and corresponding equivalent linear system are


1 2 0 0 3 0

0 0 1 0 1 0

0 0 0 1 −1 0
0 0 0 0 0 0

 ⇔

x1 + 2x2 + 3x5 = 0

x3 + x5 = 0

x4 − x5 = 0

0 = 0

The leading ones (circled) are in the variable x1, x3, and x4 columns. These are the leading
(dependent) variables and the remaining variables, x2 and x5, are the free (independent) variables.
Assigning parameters to the latter we have x2 = s and x5 = t . Next solve the dependent variables
using back-substitution.

• x4 − x5 = 0 =⇒ x4 − t = 0 =⇒ x4 = t

• x3 + x5 = 0 =⇒ x3 + t = 0 =⇒ x3 = −t

• x1 + 2x2 + 3x5 = 0 =⇒ x1 + 2s+ 3t = 0 =⇒ x1 = −2s− 3t

Writing the solution as a column matrix we have

X =


x1

x2

x3

x4

x5

 =


−2s− 3t

s
−t
t
t

 .
Using matrix addition we can break the solution matrix into a column matrix for each parameter
which we then factor out using scalar multiplication.

X =


−2s
s
0
0
0

+


−3t

0
−t
t
t

 = s


−2

1
0
0
0

+ t


−3

0
−1

1
1

 .



32 2.7 Solutions of Homogeneous Linear Systems

The general solution to the homogeneous linear system in the last example is therefore X = sX1 + tX2

where

X1 =


−2

1
0
0
0

 , X2 =


−3

0
−1

1
1


Both X1 and X2 are themselves solutions to the system by s = 1, t = 0 and s = 0, t = 1 respectively.
These solutions are called basic solutions of the homogeneous linear system and can be systematically
found by reducing the system to RREF using Gauss-Jordan elimination. Basic solutions are not unique
since we can always replace the multiplicative parameter s by, say, 2s̃ in the general solution X and then
absorb the 2 into the basic solution using scalar multiplication.3 However up to such a scalar multiple
they are unique. The number of basic solutions will correspond to the number of free parameters.

The solution of the last homogeneous linear system, X = sX1 + tX2 suggests the following general
definition.

Definition: Let X1, X2, . . . , Xn be matrices of the same dimension and c1, c2, . . . cn be numbers,
then

c1X1 + c2X2 + . . .+ cnXn

is a linear combination of X1, X2, . . . , Xn .

With this definition we can now characterize solutions to homogeneous linear systems.

Theorem 2-2: Let A be the coefficient matrix of a homogeneous linear system of m equations in n
unknowns. Then the system has n − rank(A) basic solutions and every solution to the system is a
linear combination of these basic solutions and vice versa. (If the system has no basic solutions it has
only the trivial solution X = 0.)

Let Y = a1X1 + . . .+ akXk and Z = b1X1 + . . .+ bkXk be any two solutions to a homogeneous linear
system written in terms of the basic solutions X1, . . . , Xk. Then their sum can be written

Y + Z = (a1 + b1)X1 + . . .+ (ak + bk)Xk = c1X1 + . . . ckXk,

where we have defined ci = ai + bi (i = 1, . . . , k), and hence the sum itself is a solution to the system
as it is a linear combination of the basic solutions. Similarly the scalar product cY can be written

cY = (ca1)X1 + . . .+ (cak)Xk = d1X1 + . . . dkXk,

where we have defined di = cai (i = 1, . . . , k), and hence the scalar product is also a solution to the
system as it is a linear combination of the basic solutions.4

More generally we have the following result.

Theorem 2-3: A linear combination of any solutions of a homogeneous linear system is also a solution
to the system.

Note that the system has to be homogeneous for this property to hold.
3This can be a useful step to remove fractions from a basic solution.

4These two results can also be shown directly by considering two solutions Y =

 y1

...
yn

 and Z =

 z1

...
zn

 of a

homogeneous linear system and plugging Y + Z and kY into each homogeneous equation to see that they still hold.
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We will often be interested in whether a matrix, particularly a column or row matrix, can be written as
a linear combination of other matrices. This amounts to solving a linear system.

Example 2-21

Let X =

−1
2
3

 and Y =

1
4
2

 .

Write V =

−3
0
4

 as a linear combination of X and Y or show such a combination does not exist.

Solution:
For V to be a linear combination of X and Y we must find values for s and t such that

V = sX + tY .

This implies −3
0
4

 = s

−1
2
3

+ t

1
4
2

 =

−s+ t
2s+ 4t
3s+ 2t

 .
Matrix equality of the first and last matrix implies we must solve the linear system:

−s+ t = −3

2s+ 4t = 0

3s+ 2t = 4

Reducing the corresponding augmented matrix gives−1 1 −3
2 4 0
3 2 4

⇒ R2 → R2 + 2R1

R3 → R3 + 3R1

−1 1 −3
0 6 −6
0 5 −5

⇒ R1 → −R1

R2 → 1
6R2

R3 → 1
5R3

1 −1 3
0 1 −1
0 1 −1

⇒ R1 → R1 +R2

R3 → R3 −R2

1 0 2
0 1 −1
0 0 0


The solution corresponding to the RREF is

s = 2, t = −1 ,

so V = 2X − 1Y . This is easily checked:−3
0
4

 = 2

−1
2
3

− 1

1
4
2

 .
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2.8 Matrix Multiplication

We now formally introduce how to multiply two matrices the motivation for which will be seen later.

Definition: Let A = [aij ] and B = [bij ] be two matrices with the number of columns of A being equal
to the number of rows of B. Suppose A is an m × n matrix and B is an n × q matrix. Then
the matrix product AB is an m× q matrix C, denoted [cij ] where the entry cij in i

th
row and

jth column of the product, is found by multiplying each element in the ith row of A with the
corresponding element in the jth column of B and then adding the products. In symbols

cij = [ithrow of A]


j
th

column
of
B

 = ai1b1j + ai2b2j + . . .+ ainbnj

Example 2-22

Find AB and BA if possible for the following pairs of matrices:

1.
A =

[
2 1
−1 3

]
, B =

[
1 0 2
4 −1 3

]
Solution:
A is 2× 2 and B is 2× 3 . So the product

A2×2
↑
B2

↑
×3 = C2×3

is defined and is a 2 × 3 matrix. (The inner dimensions, indicated by ↑, are equal so the
multiplication is possible and the outer dimensions are the dimensions of the new matrix.)
Direct calculation of AB gives

AB =

[
2 1
−1 3

] [
1 0 2
4 −1 3

]

=


[
2 1

] [1
4

] [
2 1

] [ 0
−1

] [
2 1

] [2
3

]
[
−1 3

] [1
4

] [
−1 3

] [ 0
−1

] [
−1 3

] [2
3

]


=

[
(2)(1) + (1)(4) (2)(0) + (1)(−1) (2)(2) + (1)(3)

(−1)(1) + (3)(4) (−1)(0) + (3)(−1) (−1)(2) + (3)(3)

]
=

[
2 + 4 0 + (−1) 4 + 3
−1 + 12 0 + (−3) −2 + 9

]
=

[
6 −1 7
11 −3 7

]
← (2× 3 matrix)

Notice the pattern in the second step where the ith row of the first matrix multiplies the jth of
the second matrix term by term and these results are added together.

The product BA on the other hand does not exist

B2×3
↑
A2

↑
×2
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since the inner dimensions are not the same. (The ith row of the first matrix has three entries
which cannot multiply term by term the jth column of the second matrix which has only two
entries.)

2.

A =

[
1 2 4
2 6 0

]
, B =

4 1 4 3
0 −1 3 1
2 7 5 2


Solution:
A is a 2× 3 matrix and B is a 3× 4 matrix and so the product AB exists and is a 2× 4 matrix:

A2×3
↑
B3

↑
×4 = C2×4

Matrix multiplication gives

AB =

[
1 2 4
2 6 0

]4 1 4 3
0 −1 3 1
2 7 5 2


=

[
4 + 0 + 8 1− 2 + 28 4 + 6 + 20 3 + 2 + 8
8 + 0 + 0 2− 6 + 0 8 + 18 + 0 6 + 6 + 0

]
=

[
12 27 30 13
8 −4 26 12

]
The matrix product BA is not defined,

B3×4
↑
A2

↑
×3

since the number of columns of B does not equal the number of rows of A.

3.

A =

−3 0
−1 2

1 1

 , B =

 6 1 3
−1 1 4

4 1 0


Solution:
AB is not defined because the number of columns in A (2) does not equal the number of rows
in B (3),

A3×2
↑
B3

↑
×3 .

The product BA is defined because the number of columns in B (3) equals the number of rows
in A.

BA = B3×3
↑
A3

↑
×2 =

 6 1 3
−1 1 4

4 1 0

−3 0
−1 2

1 1

 =

−16 5
6 6

−13 2


The product BA has dimensions 3× 2 as expected.

Note: When multiplying matrices it is helpful to proceed systematically by multiplying the first row
times each of the columns to get the first row of the product, followed by the second row times each of
the columns, to get the second row, etc.
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2.9 Diagonal Matrices

Recall a square matrix is a matrix where the number of rows equals the number of columns, i.e. an
n× n matrix.

Definition: The entries aij of a square matrix A for which i = j form the main diagonal of A .

Example 2-23

A =


5 6 −7

−1 -2 3

0 4 -1


The main diagonal of A consists of the entries 5, -2, and -1 .

Definition: A square matrix in which every element not on the main diagonal is zero is called a
diagonal matrix. A special type of diagonal matrix is the identity matrix, denoted by I, in
which every entry on the diagonal is 1 .

Example 2-24

A =

3 0 0
0 4 0
0 0 −5


is a diagonal matrix, while

I =

1 0 0
0 1 0
0 0 1


is the 3× 3 identity matrix.

Note that if we wish to denote a particular identity matrix we can write Im to represent the m×m
identity matrix. So in Example 2-24 the identity matrix is I3 .
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2.10 Properties of Matrix Operations

We now collect some of the basic properties of matrices involving matrix addition, scalar multiplication,
and matrix multiplication.

Theorem 2-4: Let A, B, and C be matrices and let a and b be scalars. Let I be an identity matrix
and 0 a zero matrix. Assuming that the dimensions of each of the matrices is such that the following
operations is defined we have the following:

A+B = B +A (commutative law for addition)(1)
(A+B) + C = A+ (B + C) (associative law for addition)(2)

A+ 0 = A(3)
A+ (−A) = 0(4)
A(BC) = (AB)C (associative law for multiplication)(5)
a(AB) = (aA)B = A(aB)(6)
(ab)C = a(bC) = b(aC)(7)

A(B + C) = AB +AC (left distributive law)(8)
(A+B)C = AC +BC (right distributive law)(9)
a(B + C) = aB + aC (scalar distributive law)(10)
(a+ b)C = aC + bC (scalar distributive law)(11)

AI = A(12)
IB = B(13)
1A = A(14)
A0 = 0(15)
0B = 0(16)
a0 = 0(17)

As with regular numbers the associative laws of matrix addition and multiplication ensure it is meaningful
to write A+B + C and ABC without using parentheses.

The properties of Theorem 2-4 are analogous to the properties of real numbers. However not all real
number properties correspond to matrix properties. We note the following

1. It is possible for AB to equal zero even if A 6= 0 and B 6= 0 :

Example 2-25

If
A =

[
−1 1

2 −2

]
, B =

[
1
1

]
then

AB =

[
0
0

]
= 0 ,

yet A 6= 0 and B 6= 0 .

2. Even if AB = AC with A 6= 0 , it may occur that B may not equal C .
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Example 2-26

If
A =

[
1 2

]
, B =

[
1 1
−1 0

]
, C =

[
3 −1
−2 1

]
,

then
AB =

[
−1 1

]
, AC =

[
−1 1

]
.

Therefore AB = AC but B 6= C .

3. In general, even when it is defined, AB 6= BA . Matrix multiplication is not commutative.

Example 2-27

If
A =

[
1 1
−1 0

]
, B =

[
3 1
2 1

]
,

then
AB =

[
5 2
−3 −1

]
, BA =

[
2 3
1 2

]
.

Therefore AB 6= BA .

2.10.1 Commutative Matrices

For the exceptional case that one can commute the product of two matrices and still get the same
result one has the following definition.

Definition: A matrix A commutes with a matrix B if AB = BA .

Example 2-28

For matrices A and B defined by

A =

[
−2 0

0 3

]
B =

[
4 0
0 −1

]
,

show that A and B commute.

Solution:

AB =

[
−2 0

0 3

] [
4 0
0 −1

]
=

[
−8 0

0 −3

]

BA =

[
4 0
0 −1

] [
−2 0

0 3

]
=

[
−8 0

0 −3

]
Since AB = BA the matrices A and B commute.
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2.11 Matrix Equations

So far we have used equality involving matrices when assigning a variable to a matrix, or similarly with
other identities when we convert a matrix to an equivalent matrix. In regular algebra one often creates
equations involving variables and then seeks to find values of those variables that make the equation
true (i.e. solve the equation). This can also be done with matrices where some or often all entries may
be unknown. Matrix equality requires corresponding entries on both sides of a matrix equation must be
equal; thus each entry generates an equation. These equations could then be solved for the unknowns.
However it is usually quicker if we do operations on a matrix as a whole to solve for the unknowns.

Example 2-29

Suppose X is a matrix of unknowns and C and D are constant matrices defined by

X =

[
x11 x12

x21 x22

]
C =

[
1 −2
−1 3

]
D =

[
2 0
0 −2

]
.

If the matrices satisfy the equation
2X − 4C = D ,

find X.

Solution:
One could evaluate the left and right-hand sides directly as follows:

2

[
x11 x12

x21 x22

]
− 4

[
1 −2
−1 3

]
=

[
2 0
0 −2

]
[
2x11 − 4 2x12 + 8
2x21 + 4 2x22 − 12

]
=

[
2 0
0 −2

]
.

Then equating corresponding terms on both sides gives:

2x11 − 4 = 2 2x12 + 8 = 0

2x21 + 4 = 0 2x22 − 12 = −2 .

Solving the equations one has:

x11 = 3 x12 = −4

x21 = −2 x22 = 5 ,

So X =

[
3 −4
−2 5

]
. However it is more useful just to work with the matrices as a whole as we

would in a regular equation, using inverse operations to isolate the matrix variable:

2X − 4C = D

2X = D + 4C

X =
1

2
(D + 4C)

X =
1

2
D + 2C

X =
1

2

[
2 0
0 −2

]
+ 2

[
1 −2
−1 3

]
X =

[
1 0
0 −1

]
+

[
2 −4
−2 6

]
X =

[
3 −4
−2 5

]
.
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2.12 Transpose of a Matrix

Definition: The transpose of an m × n matrix A, denoted by AT , is the n ×m matrix whose jth
column is the jth row of A. In symbols

(AT )ij = Aji .

Note: To find AT one interchanges the rows and columns of A.

Example 2-30

Find the transpose of the following matrices:

A =

[
−1 2

3 1

]
, B =

[
2 1 3
−1 0 5

]
.

Solution:
Exchanging rows and columns on has:

AT =

[
−1 3

2 1

]
, BT =

2 −1
1 0
3 5

 .

2.12.1 Properties of the Transpose

Theorem 2-5: Let A and B be matrices of dimensions such that the following operations are defined
and b a scalar, then the transpose has the following properties:

(A+B)T = AT +BT(1)

(AB)T = BTAT(2)

(AT )T = A(3)

(bA)T = bAT(4)

Example 2-31

Given the matrices

A =

[
1 2 0
3 0 1

]
, B =

 1 2
0 1
−2 4


compute AB , (AB)T , ATBT and BTAT .

Solution:

AB =

[
1 2 0
3 0 1

] 1 2
0 1
−2 4

 =

[
1 4
1 10

]

(AB)T =

[
1 1
4 10

]
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ATBT =

1 3
2 0
0 1

[1 0 −2
2 1 4

]
=

7 3 10
2 0 −4
2 1 4



BTAT =

[
1 0 −2
2 1 4

]1 3
2 0
0 1

 =

[
1 1
4 10

]

So (AB)T = BTAT as predicted by the theorem. It does not equal ATBT .

The transpose property of a product can be generalized to more than two matrices.

Example 2-32

Prove that (ABC)T = CTBTAT

Proof:
(ABC)T = ((AB)C)T = CT (AB)T = CT (BTAT ) = CTBTAT

Generalizing to k matrices we have the following result.

Theorem 2-6: Let A1, A2, . . . , Ak be matrices for which the product A1A2 · · ·Ak is defined, then

(A1A2 · · ·Ak)T = ATk · · ·AT2 AT1 .

2.12.2 Symmetric Matrices

Definition: A square matrix , A = [aij ], is called symmetric if aij = aji for all i and j. A square
matrix is called skew symmetric if aij = −aji for all i and j.

Example 2-33

The following matrices are symmetric:

A =

[
1 2
2 3

]
, B =

 2 −1 3
−1 5 0

3 0 −7

 .
The following matrices are skew symmetric:

C =

[
0 −1
1 0

]
, B =

 0 −1 2
1 0 1
−2 −1 0

 .

Theorem 2-7: A square matrix A = [aij ] is symmetric if and only if AT = A. It is skew symmetric if
and only if AT = −A .
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2.13 Power of a Matrix

Definition: Let A be a square matrix, then the n
th

power of A, denoted An, is the product of n
factors of A, i.e.

A1 = A

A2 = AA

A3 = AAA

...
An = AA · · ·A︸ ︷︷ ︸

n times

Example 2-34

If

A =

 1 −1 3
0 1 −2
−1 1 1


find A2 .

Solution:

A2 =

 1 −1 3
0 1 −2
−1 1 1

 1 −1 3
0 1 −2
−1 1 1

 =

 1 + 0− 3 −1− 1 + 3 3 + 2 + 3
0 + 0 + 2 0 + 1− 2 0− 2− 2
−1 + 0− 1 1 + 1 + 1 −3− 2 + 1



A2 =

−2 1 8
2 −1 −4
−2 3 −4



Having defined the power of a matrix, it is now possible to create meaningful polynomial functions of a
square matrix such as

p(A) = c0I + c1A+ c2A
2 + . . .+ cnA

n

for some positive integer n and the identity matrix I of the same dimension of A, and scalars ci .5 In
more advanced courses we could similarly consider a power series in A where we let n → ∞. Then
questions of the meaning of the convergence of such a series needs to be addressed, just as with power
series in terms of real variable x.

2.13.1 Idempotent Matrices

Definition: Matrix A is called idempotent if A2 = A .

Example 2-35

Show that the matrix A defined by

A =

[
4 −1

12 −3

]
is idempotent.
5Note some texts will define A0 = I (analogous to x0 = 1) so one may write p(A) = c0A0 + c1A1 + c2A2 + . . .+ cnAn .
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Solution:

A2 = AA =

[
4 −1

12 −3

] [
4 −1

12 −3

]
=

[
4 −1

12 −3

]
= A
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2.14 Ordered n-tuples

Definition: The ordered sequence (x1, x2, . . . , xn) where xi are real numbers and n is a positive integer
is called an ordered n-tuple. The set of all ordered n-tuples is called n-space and is denoted
by Rn.

Example 2-36

• (5, 3) is an ordered 2-tuple in R2. Note that it is different from (3, 5) (order matters).

• (1,−2, 4) is an ordered 3-tuple in R3 .

• (−3, 2.1, 7, 4,−9.5) is an ordered 5-tuple in R5 .

As the last example suggests, an obvious geometric interpretation presents itself. We can think of the
ordered 2-tuple (5, 3) as representing a point in the two-dimensional coordinate plane. Alternatively
we can consider it as representing a directed line segment (an arrow), called a vector, originating at
the origin of the coordinate system and terminating at the point.

x

y

O

(5, 3)

x

y

O

(5, 3)

Similarly (1,−2, 4) could be considered a representation of a point or vector in three-dimensional space,
while an ordered n-tuple of higher dimension can be thought of as a generalized point or n-vector in
some higher-dimensional space. In future we will tend to use a vector interpretation and typically
refer to ordered n-tuples as vectors. However vectors, as will be discussed further in Chapter 4, are
constructions that are conceptually independent of a particular set of coordinates (n-tuple) used to
represent them.

2.14.1 Notation

We will use lower case boldface letters such as x to represent the ordered n-tuple (x1, x2, . . . , xn), or
vector. For example, x = (5, 3) . When hand-written it is more common to put an arrow or bar over
the letter, such as ~x, or x̄. When speaking of the ordered n-tuple containing all zeros we will write 0 .
It is convenient, when representing an ordered n-tuple (vector) by a matrix, to use an n× 1 column
matrix

x =


x1

x2

...
xn

 ′
We can now write Ax, where previously we would have written AX, provided A is an m× n matrix so
the multiplication is meaningful. If we wish to represent a vector within a sentence as a matrix we can
conveniently use the transpose, since then x = [x1 x2 . . . xn]T .
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The motivation for considering a vector to be represented by a column matrix arises, in part, from
linear systems. Recall the linear system of m equations in n unknowns is:

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

...
am1x1 + am2x2 + . . .+ amnxn = bm

By assigning the coefficient constants to A as before, the unknowns to vector x and the right-hand side
constants to vector b as follows

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn

 , x =


x1

x2

...
xn

 , b =


b1
b2
...
bm

 ,

we now see that we can represent the linear system in terms of matrix multiplication in terms of the
simple matrix equation:

Ax = b .

This follows since multiplying the left hand side out gives precisely the m× 1 column matrix

Ax =


a11x1 + a12x2 + . . .+ a1nxn
a21x1 + a22x2 + . . .+ a2nxn

...
am1x1 + am2x2 + . . .+ amnxn

 .

The matrix equality of this with the right-hand side matrix b = [b1, b2, . . . bm]T gives back our original
linear system of equations. This shows a clear advantage for defining matrix multiplication the way
that we have done.

Example 2-37

The linear system

3x1 + 2x3 = 7

x1 + 4x2 − 4x3 = 3

2x1 + 2x2 + 8x3 = 1

can be represented by the matrix equation Ax = b where

A =

 3 0 2
1 4 −4
3 3 8

 , x =

x1

x2

x3

 , and b =

7
3
1

 .
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2.14.2 Matrix Multiplying a Vector

We can consider the m× n matrix A to be composed of n columns of vectors in m-space labelled a1,
a2, . . . , an . These are the column vectors of A . We write

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn

 = [a1 a2 · · · an] .

Cast in this form we see that our previous product Ax can be written as a sum of m × 1 matrices
(vectors), namely

Ax =


a11x1

a21x1

...
am1x1

+


a12x2

a22x2

...
am2x2

+ . . .+


a1nxn
a2nxn

...
amnxn

 = x1a1 + x2a2 + . . .+ xnan .

We have the following result.

Theorem 2-8: If A = [a1 a2 . . . an] is an m × n matrix written in terms of its column vectors ai,
then the matrix product of A times the vector x = [x1 x2 . . . xn]T in Rn can be written

Ax = x1a1 + x2a2 + . . .+ xnan .

The matrix equation Ax = b takes the new vector equation form

x1a1 + x2a2 + . . .+ xnan = b .

From this follows the following theorem.

Theorem 2-9: The linear system Ax = b is consistent if and only if b can be written as a linear
combination of the columns of matrix A .

Example 2-38

Find a vector equation involving only constant vectors that is equivalent to the linear system

3x1 + 2x3 = 7

x1 + 4x2 − 4x3 = 3

2x1 + 2x2 + 8x3 = 1

Solution:
The above linear system is equivalent to the vector equation 3x1 + 2x3

x1 + 4x2 − 4x3

2x1 + 2x2 + 8x3

 =

7
3
1

 .
An equivalent vector equation is3x1

x1

2x1

+

0x2

4x2

2x2

+

 2x3

−4x3

8x3

 =

7
3
1

 .
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Finally factoring out the variables one has:

x1

3
1
2

+ x2

0
4
2

+ x3

 2
−4

8

 =

7
3
1

 .

This result also follows directly from our previous formula

x1a1 + x2a2 + . . .+ xnan = b ,

since

A = [a1a2a3] =

3 0 2
1 4 −4
2 2 8

 and b =

7
3
1

 .

2.14.3 General Solution of a Linear System

Consider a general linear system Ax = b. If the system is consistent then there exists at least one
particular solution xp of the system. If x is any other solution of the system then the vector difference
x0 = x− xp is a solution of the associated homogeneous system Ax = 0 since

Ax0 = A(x− xp) = Ax−Axp = b− b = 0 .

Furthermore any vector x = xp + x0 where x0 is any solution of the associated homogeneous system is
a solution of the original linear system since

Ax = A(xp + x0) = Axp +Ax0 = b+ 0 = b .

We have the following result

Theorem 2-10: For any consistent linear system Ax = b the general solution can be written in the
form

x = xp + x0

where xp is a particular solution of the linear system and x0 is any solution of the associated homogeneous
system, i.e. Ax0 = 0 .

As such one approach to solving a non-homogeneous linear system is to find a particular solution and
then add to it the general solution of the associated homogeneous system. This is a pattern that arises
in other contexts such as solving differential equations. In practice for us, the separation of the solution
of a consistent linear system into its particular solution plus a general solution to the homogeneous
system (which may involve parameters) arises straight from Gauss-Jordan elimination.

Example 2-39

Express all solutions of the following system as a sum of a particular solution plus a solution of the
associated homogeneous system.

x3 + 2x4 − x5 = 4

x4 − x5 = 3

x3 + 3x4 − 2x5 = 7

2x1 + 4x2 + x3 + 7x4 = 7
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Solution:
The augmented matrix 

0 0 1 2 −1 4
0 0 0 1 −1 3
0 0 1 3 −2 7
2 4 1 7 0 7


reduces via Gauss-Jordan elimination to the RREF and corresponding equivalent linear system


1 2 0 0 3 −6

0 0 1 0 1 −2

0 0 0 1 −1 3
0 0 0 0 0 0

 ⇔

x1 + 2x2 + 3x5 = −6

x3 + x5 = −2

x4 − x5 = 3

0 = 0

The general solution is found by setting free variables x2 and x5 to parameters, x2 = s and x5 = t ,
and solving by back-substitution the remaining (leading) variables:

• x4 − x5 = 3 =⇒ x4 − t = 3 =⇒ x4 = 3 + t

• x3 + x5 = −2 =⇒ x3 + t = −2 =⇒ x3 = −2− t

• x1 + 2x2 + 3x5 = −6 =⇒ x1 + 2s+ 3t = −6 =⇒ x1 = −6− 2s− 3t .

Written as a vector the solution is

x =


−6− 2s− 3t

s
−2− t
3 + t
t

 =


−6

0
−2

3
0

+


−2s
s
0
0
0

+


−3t

0
−t
t
t

 =


−6

0
−2

3
0


︸ ︷︷ ︸

xp

+ s


−2

1
0
0
0

+ t


−3

0
−1

1
1


︸ ︷︷ ︸

x0

= xp + x0

As seen in Example 2-20 the vector x0 which involves the parameters is indeed the general solution
of the homogeneous system.

Note that the particular solution xp is not unique when there are parameters. In this problem we
could introduce new parameters s̃ and t̃ by the substitutions s = s̃ + 1 and t = t̃ − 2 and the new
particular solution would be, after collecting all the constants in one vector, xp = [−2 1 0 1 − 2]T .
The homogeneous solution with that substitution would have the same form with s and t replaced by s̃
and t̃.

For linear systems with a unique solution (no parameters) xp will be that unique solution and the
solution to the associated homogeneous system will just be x0 = 0 .
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2.15 Matrix Inversion

We have seen we can write a linear system Ax = b. If we had the algebraic problem ax = b where
a and b were just real constants and x were a variable we would just divide by a (assuming it was
non-zero), or equivalently multiply by a−1 on both sides to get (a)−1ax = (a)−1b, or just x = (a)−1b.
This raises the question of whether a matrix multiplicative inverse can be found that we could similarly
left-multiply to solve our matrix equation. Even the algebra problem, however, suggests this may not
always be possible since a = 0 has no multiplicative inverse.

Definition: Let A be an n× n matrix. The inverse of A is an n× n matrix denoted A−1 satisfying:

AA−1 = A−1A = I

where I is the n× n identity matrix.

Definition: If A−1 exists, we say A is invertible (or non-singular). If A does not have an inverse
it is said to noninvertible or singular.

Example 2-40

If A =

[
7 2
3 1

]
show A−1 =

[
1 −2
−3 7

]
is an inverse of A.

Solution:
We have by direct calculation:

AA−1 =

[
7 2
3 1

] [
1 −2
−3 7

]
=

[
7− 6 −14 + 14
3− 3 −6 + 7

]
=

[
1 0
0 1

]
= I ,

A−1A =

[
1 −2
−3 7

] [
7 2
3 1

]
=

[
7− 6 2− 2
−21 + 21 −6 + 7

]
=

[
1 0
0 1

]
= I .

Thus A−1 is an inverse of invertible matrix A .

Properties of the Inverse

Theorem 2-11: If an n× n matrix A has an inverse then that inverse is unique.

Proof:
Suppose matrix A has inverse A−1 and that B is another inverse of A then, by definition,

AA−1 = A−1A = I

and
AB = BA = I .

Using these properties and the associativity of matrix multiplication (Theorem 2-4) we have:

B = BI = B(AA−1) = (BA)(A−1) = IA−1 = A−1 .

Therefore B = A−1 and the inverse is unique.

Theorem 2-12: If an n× n matrix A is invertible then A−1 is invertible and the inverse of A−1 is A .
In symbols:

(A−1)−1 = A .
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Proof:
The defining property AA−1 = A−1A = I implies that left and right multiplying A−1 by A gives the
identity I.

Theorem 2-13: If A is an n× n invertible matrix, and c 6= 0 is a scalar then

(cA)−1 =
1

c
A−1

Proof:
We must show that

(cA)

(
1

c
A−1

)
=

(
1

c
A−1

)
(cA) = I

Using the properties of scalar and matrix multiplication (Theorem 2-4) we have:

(cA)

(
1

c
A−1

)
= c

[
A

(
1

c
A−1

)]
= c

[
1

c

(
AA−1

)]
= c

(
1

c
I

)
=

(
c
1

c

)
I = 1I = I ,

Similarly: (
1

c
A−1

)
(cA) =

1

c

[
A−1 (cA)

]
=

1

c

[
c
(
A−1A

)]
=

1

c
(cI) =

(
1

c
c

)
I = 1I = I .

Thus (cA)−1 =
1

c
A−1 .

Theorem 2-14: If A and B are n× n invertible matrices, then the product AB is also invertible with

(AB)−1 = B−1A−1 .

Proof:
A and B invertible imply A−1 and B−1 exist satisfying

AA−1 = A−1A = I ,

BB−1 = B−1B = I .

We must show that:
(AB)(B−1A−1) = (B−1A−1)(AB) = I .

We have:
(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I .

Similarly
(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I .

Thus (AB)−1 = B−1A−1.

The previous theorem generalizes to a product of k matrices.

Theorem 2-15: If A1, A2, . . . , Ak are n× n invertible matrices then the product A1A2 · · ·Ak is also
invertible with

(A1A2 · · ·Ak)−1 = A−1
k · · ·A−1

2 A−1
1 .
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Theorem 2-16: If A is a n× n invertible matrix, then AT is also invertible with

(AT )−1 = (A−1)T .

Proof:
A is invertible so A−1 exists satisfying

AA−1 = A−1A = I .

We must show that:
AT (A−1)T = (A−1)TAT = I

We have:
AT (A−1)T = (A−1A)T = IT = I ,

(A−1)TAT = (AA−1)T = IT = I .

Therefore (AT )−1 = (A−1)T .

Example 2-41

Simplify (AB)−1(AB−1)(BAT )(DA−1)T .

Solution:

(AB)−1(AB−1)(BAT )(DA−1)T = (B−1A−1)(AB−1)(BAT )((A−1)TDT )

= B−1(A−1A)(B−1B)(AT (AT )−1)DT

= B−1(I)(I)(I)DT

= B−1DT

2.15.1 Orthogonal Matrices

A special class of square matrices is defined in terms of the properties of its inverse.

Definition: A square matrix A is orthogonal if A−1 = AT .

Example 2-42

The square matrix A = 1√
2

[
1 −1
1 1

]
is orthogonal since AT = 1√

2

[
1 1
−1 1

]
and

AAT =

(
1√
2

[
1 −1
1 1

])(
1√
2

[
1 1
−1 1

])
=

1

2

[
2 0
0 2

]
=

[
1 0
0 1

]
= I .

Similarly ATA = I and thus A−1 = AT .

2.15.2 Finding the Inverse

The following example illustrates how to find the inverse using row operations.



52 2.15 Matrix Inversion

Example 2-43

Find the inverse of A =

[
−1 2
−3 5

]
.

Solution:
This solution needs expansion (as per the in-class example) and show the row operations.

If A−1 exists, then AA−1 = A−1A = I

Assume that A−1 exists, given by A =

[
a b
c d

]
AA−1 = I implies

[
−1 2
−3 5

] [
a b
c d

]
=

[
1 0
0 1

]
[
−a+ 2c −b+ 2d
−3a+ 5c −3b+ 5d

]
=

[
1 0
0 1

]
Matrix equality gives four equations in the four unknowns (a, b, c, and d). However the two equations
arising from the first column involve only a and c and the two equations arising from the second
column involve only b and d. Therefore we really need to solve two linear systems involving two
unknowns, one per column. The first column system solution is as follows.

−a+ 2c = 1

−3a+ 5c = 0
⇔

[
−1 2 1
−3 5 0

]
[
−1 2 1
−3 5 0

]
⇒ R1 → −R1

R2 → R2 − 3R1

[
1 −2 −1
0 −1 −3

]
⇒ R1 → R1 − 2R2

R2 → −R2

[
1 0 5
0 1 3

]
⇒ a = 5

c = 3

Similarly the second column system and solution is

−b+ 2d = 0

−3b+ 5d = 1
⇔

[
−1 2 0
−3 5 1

]
[
−1 2 0
−3 5 1

]
⇒ R1 → −R1

R2 → R2 − 3R1

[
1 −2 0
0 −1 1

]
⇒ R1 → R1 − 2R2

R2 → −R2

[
1 0 −2
0 1 −1

]
⇒ b = −2
d = −1

Therefore A−1 =

[
5 −2
3 −1

]
. Comparison of the solutions for the two systems shows that the row

operations to solve both systems will depend, in the event there is a unique solution, entirely on the
coefficient matrix. This suggests solving both systems simultaneously using the augmented matrix
[A|I] where I is the identity matrix:

[A|I] =

[
−1 2 1 0
−3 5 0 1

]
Reducing to RREF gives[

−1 2 1 0
−3 5 0 1

]
⇒ R1 → −R1

R2 → R2 − 3R1

[
1 −2 −1 0
0 −1 −3 1

]
⇒ R1 → R1 − 2R2

R2 → −R2

[
1 0 5 −2
0 1 3 −1

]
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We see the inverse, after the operations have been completed, is the right-hand side of the final
augmented matrix which has the form [I|A−1]. Thus

A−1 =

[
5 −2
3 −1

]

In general we see that to find the inverse we do the reduction [A|I]⇒ [I|A−1] . If the left hand side
cannot reduce to I, then no inverse exists.

Steps for Finding the Inverse of a Matrix:

1. Write the identity matrix (of the same dimension as A) adjacent to the matrix A to form an
augmented matrix [A|I].

2. Perform row operations on this augmented matrix until the matrix that was A is reduced to the
identity matrix if possible.

[I|A−1]

3. The matrix in the position of the original identity matrix is A’s inverse A−1 .

In summary [A|I]⇒ [I|A−1] . If the procedure cannot be successfully completed then A is noninvertible.

The previous steps can be applied once and for all to the 2 × 2 matrix
[
a b
c d

]
to find the following

inverse which can then be confirmed by direct matrix multiplication.

Theorem 2-17: If A =

[
a b
c d

]
is a 2× 2 matrix with ad− bc 6= 0, then A−1 exists and

A−1 =
1

(ad− bc)

[
d −b
−c a

]
.

Example 2-44

Find A−1 if A =

[
2 5
−3 7

]
.

Solution:
Since a = 2, b = 5, c = −3, and d = 7 we have

ad− bc = 2(7)− 5(−3) = 29

which is nonzero so the inverse matrix A−1 exists and equals

A−1 =
1

(ad− bc)

[
d −b
−c a

]
=

1

29

[
7 −5
3 2

]
=

[ 7
29 − 5

29
3
29

2
29

]

Example 2-45

Find the inverse of A =

 2 1 0
−4 −1 −3

3 1 2

 .
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Solution:
We reduce [A|I] to RREF:

[A|I] =

 2 1 0 1 0 0
−4 −1 −3 0 1 0

3 1 2 0 0 1


⇓

R2 → R2 + 2R1

R3 → R3 − 3
2R1

2 1 0 1 0 0
0 1 −3 2 1 0
0 − 1

2 2 − 3
2 0 1


⇓

R3 → R3 + 1
2R2

2 1 0 1 0 0
0 1 −3 2 1 0
0 0 1

2 − 1
2

1
2 1


⇓

R1 → 1
2R1

R3 → 2R3

1 1
2 0 1

2 0 0
0 1 −3 2 1 0
0 0 1 −1 1 2


⇓

R2 → R2 + 3R3

1 1
2 0 1

2 0 0
0 1 0 −1 4 6
0 0 1 −1 1 2


⇓

R1 → R1 − 1
2R2

1 0 0 1 −2 −3
0 1 0 −1 4 6
0 0 1 −1 1 2

 = [I|A−1]

Therefore A is invertible with

A−1 =

 1 −2 −3
−1 4 6
−1 1 2

 .

Example 2-46

Find the inverse of A =

1 0 −3
0 1 2
1 2 1

 .
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Solution:
Reducing [A|I] gives

[A|I] =

1 0 −3 1 0 0
0 1 2 0 1 0
1 2 1 0 0 1

⇒
R3 → R3 −R1

1 0 −3 1 0 0
0 1 2 0 1 0
0 2 4 −1 0 1


⇒

R3 → R3 − 2R2

1 0 −3 1 0 0
0 1 2 0 1 0
0 0 0 −1 −2 1


Here the bottom row coefficients are all zero so no identity occurs and therefore A is noninvertible.

2.15.3 Solving Linear Systems Using Matrix Inversion

If A is a n× n invertible matrix (ie. A−1 exists), then the linear system

Ax = b

can be solved using A−1 as follows. Left-multiplying both sides by A−1 gives

A−1Ax = A−1b

Ix = A−1b

x = A−1b

Thus x = A−1b . This process is known as method of inverses. Note that this method cannot be
used to solve a linear system Ax = b if A is not square or if A is noninvertible.

Example 2-47

Solve the linear system by the method of inverses:

2x+ y = −1

−4x− y − 3z = 2

3x+ y + 2z = 1

Solution:

A =

 2 1 0
−4 −1 −3

3 1 2

 , x =

xy
z

 , b =

−1
2
1


In Example 2-45 we found

A−1 =

 1 −2 −3
−1 4 6
−1 1 2


Therefore, using the method of inverses:

x = A−1b =

 1 −2 −3
−1 4 6
−1 1 2

−1
2
1

 =

−1− 4− 3
1 + 8 + 6
1 + 2 + 2

 =

−8
15
5


So x = −8, y = 15, and z = 5 .
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We now state some conditions relating the invertibility of a square matrix A, to other matrix and linear
system properties we have studied thus far.

Theorem 2-18: If A is an n× n matrix, the follow statements are equivalent:

1. A is invertible.

2. Ax = b has a unique solution.

3. Ax = 0 has the unique trivial solution x = 0 .

4. rank(A) = n .

5. The reduced row echelon form of A is I, the identity matrix.

Using our ability to find inverses as well as the basic properties of matrices (Theorem 2-4) allows
further methods for solving matrix equations. Note that the properties (AT )T = A for transposes
(Theorem 2-5) and the similar property (A−1)−1 = A for inverses (Theorem 2-12) can be useful for
isolating a matrix variable.

Example 2-48

Solve the following matrix equation for the matrix A .

(5AT )−1 =

[
2 8
1 5

]
Solution:
Inverting both sides of the equation gives

(
(5AT )−1

)−1
=

[
2 8
1 5

]−1

.

But (B−1)−1 = B so the left-hand side simplifies to

5AT =

[
2 8
1 5

]−1

.

Using Theorem 2-17 the right-hand side may be directly evaluated.

5AT =
1

(2)(5)− (8)(1)

[
5 −8
−1 2

]
=

1

2

[
5 −8
−1 2

]
Multiply both sides by 1/5 to get

AT =
1

10

[
5 −8
−1 2

]
.

Taking the transpose of both sides gives

(AT )T =

(
1

10

[
5 −8
−1 2

])T
Using Theorem 2-5 the left-hand side simplifies to A and one can pull the constant 1/10 out of the
transpose on the right-hand side to get

A =
1

10

[
5 −8
−1 2

]T
.
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Evaluating the transpose gives

A =
1

10

[
5 −1
−8 2

]
,

and one can, if desired, bring the scalar constant into the matrix:

A =

[ 5
10 − 1

10

− 8
10

2
10

]
=

[ 1
2 − 1

10

− 4
5

1
5

]
.

This solution can be checked in the original matrix equation.

An Application to Geometry

As an interesting application of solving linear systems consider the following problem. A common tool
in computer drawing programs (such as the free software program xfig) is a tool for drawing circular
arcs. The user enters three points and the program will then find a circular arc through those points.
Let us explore how this is calculated. The equation for a circle of radius 2 centred at the origin (0, 0) of
a Cartesian Coordinate system is, using the Pythagorean Theorem,

x2 + y2 = 22 .

If the centre of the circle is at the point (3, 4) instead of the origin one would have the equation

(x− 3)2 + (y − 4)2 = 22 .

In general, a circle with radius r centred at the point (h, k) has the equation

(x− h)2 + (y − k)2 = r2 .

If this equation is expanded one gets

x2 − 2xh+ h2 + y2 − 2yk + k2 = r2 .

If one rearranges this one has

x2 + y2 + (−2h)x+ (−2k)y + (h2 + k2 − r2) = 0

By introducing three new constants, a = −2h, b = −2k and c = h2 + k2 − r2 one can replace h, k, and
r to get a new circle equation:

x2 + y2 + ax+ by + c = 0 .

If we can therefore figure out a, b, and c for this equation we could solve to get h, k, and r and thereby
find our circle.

Suppose we know a point (x, y) = (−1,−3) sits on the desired circle. For this to be true it must satisfy
the circle equation and we have

(−1)2 + (−3)2 + a(−1) + b(−3) + c = 0 ,

which can be rewritten
−a− 3b+ c = −10 .

Now despite the equation of the circle being quadratic in the variables x and y, this equation in terms
of the unknown constants a, b, and c, is linear! Having knowledge of two more points on the circle
produces two more equations involving the unknown constants, thereby creating a determined linear
system which we can solve.



58 2.15 Matrix Inversion

Example 2-49

Find the circle that goes through the three points (−1,−3), (5, 5), and (−2, 4) .

Solution:
Inserting the the (x, y) values of each point into the equation

x2 + y2 + ax+ by + c = 0

produces the following determined linear system in constants a, b, and c :

(−1,−3) : (−1)2 + (−3)2 + a(−1) + b(−3) + c = 0 =⇒ −a− 3b+ c = −10

(5, 5) : (5)2 + (5)2 + a(5) + b(5) + c = 0 =⇒ 5a+ 5b+ c = −50

(−2, 4) : (−2)2 + (4)2 + a(−2) + b(4) + c = 0 =⇒ −2a+ 4b+ c = −20

The system can be represented by Ax = b with matrices defined by

A =

−1 −3 1
5 5 1
−2 4 1

 x =

ab
c

 b =

−10
−50
−20

 .
The quickest way to find x is to reduce [A|b] and back-substitute. A longer method is to solve for
the inverse A−1 by reducing [A|I] to [I|A−1] to get (show this!)

A−1 =


1
50

7
50 − 4

25

− 7
50

1
50

3
25

3
5

1
5

1
5

 ,
and then use the method of inverses to find

x =

ab
c

 = A−1b =


1
50

7
50 − 4

25

− 7
50

1
50

3
25

3
5

1
5

1
5


−10
−50
−20

 =

−
1
5 − 7 + 80

25
7
5 − 1− 60

25

−6− 10− 4

 =

 −4
−2
−20

 .
So a = −4, b = −2, and c = −20. Next solve for constants h, k, and r using the formulas from our
previous discussion:

• a = −4 = −2h =⇒ h = 2

• b = −2 = −2k =⇒ k = 1

• c = −20 = h2 + k2 − r2 =⇒ −20 = (2)2 + (1)2 − r2 =⇒ r2 = 25 =⇒ r = 5

So the desired circle has centre (h, k) = (2, 1) and radius r = 5. Inserting these constants into
(x− h)2 + (y − k)2 = r2 gives the equation for the circle

(x− 2)2 + (y − 1)2 = 25 .

A plot verifies the circle is correct
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x

y

2

1
(2, 1)

(−2, 4)

(5, 5)

(−1,−3)

If three distinct points are collinear, like (−1, 0), (0, 0), and (0, 1), the linear system generated will be
inconsistent. (Show this!)
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2.16 Elementary Matrices

Definition: A square matrix is called an elementary matrix if it can be obtained from the identity
matrix of the same dimension by performing a single elementary row operation.

Since only a single row operation is allowed, this means an elementary matrix arises in one of three
ways (and can be classified by this):

1. Multiplication of a row by a nonzero scalar.

2. Addition of a multiple of one row to a different row.

3. Interchanging of two rows.

Example 2-50

Determine the elementary matrices for each of the following row operations for the square matrix of
given size.

1. R1 → 2R1, 2× 2

Solution:

I =

[
1 0
0 1

]
, E =

[
2 0
0 1

]
2. R2 → R2 − 3R1, 4× 4

Solution:

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , E =


1 0 0 0
−3 1 0 0

0 0 1 0
0 0 0 1


3. R1 ↔ R3, 3× 3

Solution:

I =

1 0 0
0 1 0
0 0 1

 , E =

0 0 1
0 1 0
1 0 0



Example 2-51

Determine whether the given matrices are elementary matrices. If they are write down the corre-
sponding row operation.

1. E1 =

1 0 0
0 1 0
0 −2 1


Solution: Elementary, R3 → R3 − 2R2



Matrices 61

2. E2 =

1 0 3
0 1 0
0 0 1


Solution: Elementary, R1 → R1 + 3R3

3. E3 =

1 0 0
0 1 0
0 0 1


Solution: Elementary, R1 → (1)R1

4. E4 =


1 0 1 0
0 1 0 0
0 0 1 −2
0 0 0 1


Solution: Not an elementary matrix

Elementary Matrix Notation and Inverse

We can write a particular elementary matrix with the following notation for given n× n dimension.

1. Eii(c) is obtained from I by multiplying c 6= 0 times row i .

2. Eij(c), i 6= j is obtained from I by adding c times row j to row i .

3. Pij is obtained from I by interchanging rows i and j .

Consideration of how to undo the row operation underlying a given elementary matrix results in the
following theorem.

Theorem 2-19: Every elementary matrix is invertible where the inverse is an elementary matrix given
by:

(Eii(c))
−1 = Eii

(
1

c

)
(Eij(c))

−1 = Eij(−c) (i 6= j)

(Pij)
−1 = Pij .

Example 2-52

Find the inverse of the given elementary matrix.

1. E =

[
1 0
2 1

]
Solution:
E arises from R2 → R2 + 2R1 therefore E = E21(2) .

Thus E−1 = E21(−2) and E−1 =

[
1 0
−2 1

]
.
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2. E =

1 0 0
0 0 1
0 1 0


Solution:
E arises from R2 ↔ R3 therefore E = P23 .

Thus E−1 = P23 and E−1 =

1 0 0
0 0 1
0 1 0

 .

3. E =

[
1 0
0 −2

]
Solution:
E arises from R2 → (−2)R2 therefore E = E22(−2) .

Thus E−1 = E22

(
− 1

2

)
=

[
1 0
0 − 1

2

]
.

Row Operations by Matrix Multiplication

The following theorem demonstrates the utility of elementary matrices. They allow us to represent row
operations using matrix multiplication.

Theorem 2-20: If the elementary matrix E results from performing a certain elementary row operation
on Im (the m×m identity matrix) and if A is an m× n matrix, then the product EA is the matrix
that results when the same row operation is performed on A .

Example 2-53

Given the elementary matrix E and A, identify the row operation corresponding to E and find the
product EA directly to verify the row operation is indeed performed on A .

1. E =

1 0 0
0 1 0
3 0 1

 A =

1 0 2 3
2 −1 3 6
1 4 4 0


Solution:
E corresponds to R3 → R3 + 3R1

EA =

1 0 0
0 1 0
3 0 1

1 0 2 3
2 −1 3 6
1 4 4 0

 =

1 0 2 3
2 −1 3 6
4 4 10 9

 which is R3 → R3 + 3R1 acting on A .

2. E =


1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

 A =


1 0 1 5 0
1 2 0 1 0
−1 −3 −1 3 1

2 1 1 −2 0


Solution:
E corresponds to R3 → 2R3

EA =


1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1




1 0 1 5 0
1 2 0 1 0
−1 −3 −1 3 1

2 1 1 −2 0

 =


1 0 1 5 0
1 2 0 1 0
−2 −6 −2 6 2

2 1 1 −2 0


which is R3 → 2R3 acting on A .
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3. E =

1 0 0
0 0 1
0 1 0

 A =

 2 −1 3
−1 0 2

1 1 5


Solution:
E corresponds to R2 ↔ R3

EA =

1 0 0
0 0 1
0 1 0

 2 −1 3
−1 0 2

1 1 5

 =

 2 −1 3
1 1 5
−1 0 2

 which is R2 ↔ R3 acting on A .

Example 2-54

For each pair of matrices, find an elementary matrix such that B = EA .

1. A =

[
1 −1
2 1

]
B =

[
1 −1
4 2

]
Solution:
Since B arises from A by the row operation R2 → 2R2 ,

E =

[
1 0
0 2

]
Direct multiplication confirms EA = B.

2. A =

 1 1 −1
2 1 2
−1 1 0

 B =

1 1 −1
2 1 2
1 2 2


Solution:
Since B arises from A by the row operation R3 → R3 +R2 ,

E =

1 0 0
0 1 0
0 1 1


Direct multiplication confirms EA = B.

Elementary Matrix Decomposition

Theorem 2-21: A matrix A is invertible if and only if it can be written as a product of elementary
matrices of the same dimension as A .

To find the matrix product, recall the reduced row echelon form of A is I. Thus one can reduce A to I
keeping track of the k row operations required. One then has

EkEk−1 · · ·E1A = I .

for some k elementary matrices Ei . Then, considering B = EkEk−1 · · ·E1 one can multiply both sides
by B−1 to get:

A = (EkEk−1 · · ·E1)−1I = (EkEk−1 · · ·E1)−1 = (E1)−1 · · · (Ek−1)−1(Ek)−1 .

Since each inverted elementary matrix is itself an elementary matrix one has the required product.
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Example 2-55

If possible, write A =

1 −1 0
1 −1 1
0 1 1

 as a product of elementary matrices.

Solution:

A =

1 −1 0
1 −1 1
0 1 1


⇓

R2 → R2 −R1

1 −1 0
0 0 1
0 1 1

 = E21(−1)A

⇓

R2 ↔ R3

1 −1 0
0 1 1
0 0 1

 = P23E21(−1)A

⇓

R2 → R2 −R3

1 −1 0
0 1 0
0 0 1

 = E23(−1)P23E21(−1)A

⇓
R1 → R1 +R2

1 0 0
0 1 0
0 0 1

 = I = E12(1)E23(−1)P23E21(−1)A

Having reduced A to RREF, the matrix is invertible and the process of reduction can be written as
follows:

E12(1)E23(−1)P23E21(−1)A = I

Remember that order is important here with the first row operation needing to act on A first. Then
we have

A = (E12(1)E23(−1)P23E21(−1))
−1
I

= (E21(−1))−1(P23)−1(E23(−1))−1(E12(1))−1

= E21(1)P23E23(1)E12(−1) .
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Example 2-56

If possible, write A =

0 1 −2
1 0 4
0 0 3

 as a product of elementary matrices.

Solution:

A =

0 1 −2
1 0 4
0 0 3


⇓

R1 ↔ R2

R3 → 1
3R3

1 0 4
0 1 −2
0 0 1

 = P12E33

(
1
3

)
A

⇓
R1 → R1 − 4R3

R2 → R2 + 2R3

1 0 0
0 1 0
0 0 1

 = I = E13(−4)E23(2)P12E33

(
1
3

)
A

Then A is invertible and one has

E13(−4)E23(2)E33(1/3)P12A = I .

Therefore:

A = (E13(−4)E23(2)E33(1/3)P12)−1I

= (P12)−1(E33(1/3))−1(E23(2))−1(E13(−4))−1

= P12E33(3)E23(−2)E13(4) .

Note that while the order of the matrices in general matters, the order of

P12 =

0 1 0
1 0 0
0 0 1

 and E33(1/3) =

1 0 0
0 1 0
0 0 1/3


could have been swapped as both were introduced at the same initial step. That this is acceptable
is because one can verify P12E33(1/3) = E33(1/3)P12, i.e. the two matrices commute. Similarly
E13(−4) and E23(2) could have been introduced in a swapped order at the second step.

Example 2-57

If possible, write A =

 1 −1 1
−2 2 1

0 0 1

 as a product of elementary matrices.



66 2.16 Elementary Matrices

Solution:

A =

 1 −1 1
−2 2 1

0 0 1


⇓

R2 → R2 + 2R1

1 −1 1
0 0 3
0 0 1

 = E21(2)A

⇓

R2 ↔ R3

1 −1 1
0 0 1
0 0 3

 = P23E21(2)A

⇓

R3 → R3 − 3R2

1 −1 1
0 0 1
0 0 0

 = E32(−3)P23E21(2)A

The matrix A cannot be reduced to the identity matrix, therefore A is noninvertible and A cannot
be written as a product of elementary matrices.

We found, for an invertible matrix A, that we could reduce it by elementary row matrices to identity
matrix I by

EkEk−1 · · ·E1︸ ︷︷ ︸
=B

A = I .

Since BA = I it follows that B = A−1 and the elementary matrix expansion of A−1, if desired, is
therefore

A−1 = EkEk−1 · · ·E1 .

In practice this mechanism is a complicated way to find the inverse due to the multiplication required.
As was already seen, augmenting A to [A|I] and reducing to [I|A−1] is an algorithmically superior
solution.

Consider the more general problem of reducing an arbitrary m× n matrix A to its reduced row echelon
form. Since this can be done by elementary row operations which can be represented by multiplication
by elementary matrices we have

EkEk−1 · · ·E1A = R

whereR is the RREF of matrixA and the Ei arem×m elementary matrices. DefiningB = EkEk−1 · · ·E1

we see that for any matrix A we can find an invertible matrix B, written as a product of elementary
matrices such that

BA = R .

In other words, we can reduce any matrix A to its RREF by matrix multiplication. Now since B is
a product of elementary matrices which in turn are found by reducing A to R we could find B by
matrix multiplication. However our experience with inverting matrices suggests that a more efficient
mechanism to find B is to augment the m×n matrix A by the identity matrix Im and reduce as follows

[A|I]⇒ [R|B] .

The desired product B = EkEk−1 · · ·E1 will then be found quickly. The following example illustrates
the procedure.
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Example 2-58

Given the matrix
A =

[
1 2 0
3 5 −2

]
find an invertible matrix B such that BA = R, where R is the reduced row echelon form of A, and
express B as a product of elementary matrices.

Solution:
Augment A by I2, the 2×2 identity matrix, and reduce to RREF keeping track of the row operations.

[A|I] =

[
1 2 0 1 0
3 5 −2 0 1

]
⇓

R2 → R2 − 3R1

[
1 2 0 1 0
0 −1 −2 −3 1

]
= [E1A|E1]

⇓

R2 → −R2

[
1 2 0 1 0
0 1 2 3 −1

]
= [E2E1A|E2E1]

⇓
R1 → R1 − 2R2

[
1 0 −4 −5 2
0 1 2 3 −1

]
= [E3E2E1A|E3E2E1] = [R|B]

Thus the RREF of A is
R =

[
1 0 −4
0 1 2

]
,

and the matrix B which reduces A, so that BA = R , is given by

B =

[
−5 2

3 −1

]
.

As a product of elementary matrices we have B = E3E2E1, where, looking back at our row operations
we have, calculating the elementary matrices by operating on the identity matrix,[

1 0
0 1

]
⇒
R2 → R2 − 3R1

[
1 0
−3 1

]
= E1 = E21(−3)[

1 0
0 1

]
⇒
R2 → −R2

[
1 0
0 −1

]
= E2 = E22(−1)[

1 0
0 1

]
⇒ R1 → R1 − 2R2

[
1 −2
0 1

]
= E3 = E12(−2)

Thus as a product of elementary matrices we have

B =

[
−5 2

3 −1

]
= E3E2E1 = E12(−2)E22(−1)E21(−3) =

[
1 −2
0 1

] [
1 0
0 −1

] [
1 0
−3 1

]
.

One can confirm by direct matrix multiplication that BA = R and that B = E3E2E1 for these
matrices.
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3.1 Defining the Determinant

In Theorem 2-17 the inverse of the 2× 2 matrix
[
a b
c d

]
was found to be

1

(ad− bc)

[
d −b
−c a

]
.

Clearly for this inverse formula to work the number ad−bc must be nonzero. This single number ad−bc
which depends on all the entries of the matrix is called its determinant and the goal of this chapter is
to generalize the formula to square matrices of arbitrary dimension, determine ways to calculate it, find
out its properties and its useful applications.

Let A be an n× n square matrix. Associated with A there is a number called the determinant of A
denoted by detA, det (A), or |A| . Note that the vertical bars here do not refer to absolute value.

If A is a 1× 1 matrix, so A = [a11], then detA = a11 .

If A is a 2× 2 matrix, so A =

[
a11 a12

a21 a22

]
, then detA = a11a22 − a12a21 .

Example 3-1

If A =
[
−9
]
, then detA = |A| = −9

If B =

[
1 2
2 −3

]
, then detB = |B| = (1)(−3)− (2)(2) = −3− 4 = −7

To define the determinant of square matrices of arbitrary dimension we will do so recursively in terms
of the determinants of the smaller matrices they contain. This requires the following definition.

Definition: Let A be an m× n matrix, then the submatrix Aij is obtained from A by deleting the
ith row and jth column.

Example 3-2

If A =

2 −1 1
0 1 2
3 5 −4

 then A12 =

[
0 2
3 −4

]
and A33 =

[
2 −1
0 1

]
.

With this notation we note that the determinant of a 2× 2 matrix A =

[
a11 a12

a21 a22

]
can be written in

terms of the determinants of its 1× 1 submatrices as

detA = a11a22 − a12a21 = a11 detA11 − a12 detA12 .

This suggests that we can generalize the determinant to a 3× 3 matrix

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33


by adding and subtracting alternately the product of each entry in its first row times the determinant
of its corresponding submatrix:

detA = a11 detA11 − a12 detA12 + a13 detA13 .

Since these submatrices are 2 × 2 matrices, this is well-defined. Proceeding recursively we can now
define the determinant for square matrices of any dimension.
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Definition: Let A = [aij ] be a square matrix of dimension n × n . Associated with A there is a
number called the determinant of A denoted by detA, det (A), or |A| . If n = 1 then define
detA = a11.
For n > 1 define

detA = a11 detA11 − a12 detA12 + . . .+ (−1)n+1a1n detA1n ,

where Aij is the submatrix obtained from A by deleting the ith row and jth column from A .

Example 3-3

Compute the determinant of A for the given matrices.

1. A =

[
6 −3
5 9

]
Solution:

detA = (6)(9)− (−3)(5) = 54 + 15 = 69

2. A =

2 4 7
6 0 3
1 5 3


Solution:

detA = a11 detA11 − a12 detA12 + a13 detA13

= 2

∣∣∣∣0 3
5 3

∣∣∣∣− 4

∣∣∣∣6 3
1 3

∣∣∣∣+ 7

∣∣∣∣6 0
1 5

∣∣∣∣
= 2(0− 15)− 4(18− 3) + 7(30− 0)

= 2(−15)− 4(15) + 7(30)

= −30− 60 + 210

= 120

3. A =

 1 3 0
−5 2 3

1 0 −1


Solution:

detA = a11 detA11 − a12 detA12 + a13 detA13

= 1

∣∣∣∣2 3
0 −1

∣∣∣∣− 3

∣∣∣∣−5 3
1 −1

∣∣∣∣+�����
(0) detA13

= 1(−2− 0)− 3(5− 3)

= 1(−2)− 3(2)

= −2− 6

= −8

4. A =

−1 2 −3
1 1 2
0 2 −5


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Solution:

detA = (−1)

∣∣∣∣1 2
2 −5

∣∣∣∣− 2

∣∣∣∣1 2
0 −5

∣∣∣∣+ (−3)

∣∣∣∣1 1
0 2

∣∣∣∣
= (−1)(−5− 4)− 2(−5− 0)− 3(2− 0)

= 9 + 10− 6

= 13

The Rule of Sarrus for 3 × 3 Matrix Determinants

For a 2×2 matrix the determinant
∣∣∣∣a b
c d

∣∣∣∣ = ad− bc is easily remembered as the product of the diagonal

from left to right minus the product of the diagonal from right to left. For a 3× 3 matrix a similar
pattern emerges if one appends the first two columns of the matrix on the right of the matrix to form a
3× 5 matrix.

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

The determinant of the 3× 3 matrix is then the sum of the three diagonal products from left to right
minus the sum of the three diagonal products from right to left. This is known as the Rule of Sarrus.
That this is true can be seen by applying the definition of the determinant to a general 3× 3 matrix to
get: ∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23

a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22

a31 a32

∣∣∣∣
= a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31

= a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33

Note that the Rule of Sarrus applies only to determinants of 3 × 3 matrices. The pattern fails for
determinants of matrices of order greater than three.

Example 3-4

Find the determinant of the 3× 3 matrix using the Rule of Sarrus.

1. A =

−1 2 −3
1 1 2
0 2 −5


Solution:

−1 2 −3 −1 2

1 1 2 1 1

0 2 −5 0 2
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detA = (−1)(1)(−5) + (2)(2)(0) + (−3)(1)(2)− (−3)(1)(0)− (−1)(2)(2)− (2)(1)(−5)

= 5 + 0− 6 + 0 + 4 + 10

= 13

2. A =

0 2 3
1 4 0
5 0 6


Solution:

0 2 3 0 2

1 4 0 1 4

5 0 6 5 0

detA = 0 + 0 + 0− (3)(4)(5)− 0− (2)(1)(6)

= −60− 12

= −72

3.1.1 Cofactor Expansion

Consider finding the determinant of the matrix

A =


5 1 2 4
−1 0 2 3

1 1 6 1
1 0 0 −4

 .
We have

detA = 5 detA11 − 1 detA12 + 2 detA13 − 4 detA14

and the determinants of the submatrices of dimension 3×3 would then need to be evaluated. To compute
this requires a fair amount of work. We wish to study other methods of evaluating determinants.

Definition: Let A be an n×n square matrix (a matrix of order n) and let Aij denote the (n−1)×(n−1)
submatrix obtained from A by deleting the ith row and jth column, then:

• The i, j-minor of A, denoted by mij , is given by mij = detAij .

• The i, j-cofactor of A, denoted by cij , is given by cij = (−1)i+jmij = (−1)i+j detAij .

• The cofactor matrix of A is the n× n matrix C = [cij ] .

Note that since i+ j is even if i and j are both even or both odd and i+ j is odd if i is even and j is
odd, or vice versa, it follows that −1i+j has the pattern

+ − + − · · ·
− + − + · · ·
+ − + − · · ·
− + − + · · ·
...

...
...

...

 .
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Example 3-5

Find the minors, cofactors, and cofactor matrix of the given matrices.

1. A =

2 −3 1
4 0 −2
3 −1 −3


Solution:
The matrix has 9 elements, therefore it has 9 minors and 9 cofactors. The minors are:

m11 =

∣∣∣∣ 0 −2
−1 −3

∣∣∣∣ = 0− 2 = −2 m12 =

∣∣∣∣4 −2
3 −3

∣∣∣∣ = −12 + 6 = −6 m13 =

∣∣∣∣4 0
3 −1

∣∣∣∣ = −4 + 0 = −4

m21 =

∣∣∣∣−3 1
−1 −3

∣∣∣∣ = 9 + 1 = 10 m22 =

∣∣∣∣2 1
3 −3

∣∣∣∣ = −6− 3 = −9 m23 =

∣∣∣∣2 −3
3 −1

∣∣∣∣ = −2 + 9 = 7

m31 =

∣∣∣∣−3 1
0 −2

∣∣∣∣ = 6− 0 = 6 m32 =

∣∣∣∣2 1
4 −2

∣∣∣∣ = −4− 4 = −8 m33 =

∣∣∣∣2 −3
4 0

∣∣∣∣ = 0 + 12 = 12

The cofactors additionally have the multiplicative sign factor −1i+j to get

c11 = +m11 = −2 c12 = −m12 = 6 c13 = +m13 = −4
c21 = −m21 = −10 c22 = +m22 = −9 c23 = −m23 = −7
c31 = +m31 = 6 c32 = −m32 = 8 c33 = +m33 = 12

The cofactor matrix of A is therefore

C =

 −2 6 −4
−10 −9 −7

6 8 12

 .

2. A =

 1 −3 2
0 1 3
−1 −2 5


Solution:
The minors of A are:

m11 =

∣∣∣∣ 1 3
−2 5

∣∣∣∣ = 11 m12 =

∣∣∣∣ 0 3
−1 5

∣∣∣∣ = 3 m13 =

∣∣∣∣ 0 1
−1 −2

∣∣∣∣ = 1

m21 =

∣∣∣∣−3 2
−2 5

∣∣∣∣ = −11 m22 =

∣∣∣∣ 1 2
−1 5

∣∣∣∣ = 7 m23 =

∣∣∣∣ 1 −3
−1 −2

∣∣∣∣ = −5

m31 =

∣∣∣∣−3 2
1 3

∣∣∣∣ = −11 m32 =

∣∣∣∣1 2
0 3

∣∣∣∣ = 3 m33 =

∣∣∣∣1 −3
0 1

∣∣∣∣ = 1

The cofactors of A are:

c11 = +m11 = 11 c12 = −m12 = −3 c13 = +m13 = 1
c21 = −m21 = 11 c22 = +m22 = 7 c23 = −m23 = 5
c31 = +m31 = −11 c32 = −m32 = −3 c33 = +m33 = 1

The cofactor matrix of A is therefore:

C =

 11 −3 1
11 7 5
−11 −3 1


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Theorem 3-1: If A is an n× n matrix then detA can be evaluated by a cofactor expansion along
any row or any column as follows:
Along the ith row:

detA = ai1ci1 + ai2ci2 + . . .+ aincin .

Along the jth column:
detA = a1jc1j + a2jc2j + . . .+ anjcnj .

In addition to illustrating a profound property of the determinant, cofactor expansion has practical
utility. When evaluating a determinant we can choose to expand a row or column containing one or
more zeros to simplify calculation.

Since a matrix with a zero row or column may always be expanded along it when finding the determinant
we have the following corollary of the cofactor expansion theorem.

Corollary: If square matrix A has a zero row or column then detA = 0.

Example 3-6

Evaluate the determinant of the given matrix.

1. A =

2 −3 1
4 0 −2
3 −1 −3


Solution:
Expanding along the second row we have:

detA = a21c21 +���a22c22 + a23c23

= 4(−1)2+1m21 + (−2)(−1)2+3m23

= −4m21 + 2m23

= −4

∣∣∣∣−3 1
−1 −3

∣∣∣∣+ 2

∣∣∣∣2 −3
3 −1

∣∣∣∣
= −4[(−3)(−3)− (1)(−1)] + 2[(2)(−1)− (−3)(3)]

= −40 + 14

= −26

2. A =


1 0 1 −7
9 0 3 −1
2 0 1 5
0 0 4 0


Solution:
Since its second column is all zeros, detA = 0 .

3. A =

 1 −3 2
0 1 3
−1 −2 5


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Solution:
Expanding along the first column:

detA = a11c11 +���a21c21 + a31c31

= 1(−1)1+1m11 + (−1)(−1)3+1m31

= m11 −m31

=

∣∣∣∣ 1 3
−2 5

∣∣∣∣− ∣∣∣∣−3 2
1 3

∣∣∣∣
= 5− (−6)− [(−9)− 2]

= 11 + 11

= 22

4. A =


5 1 2 4
−1 0 2 3

1 1 6 1
1 0 0 −4

 (Our 4× 4 matrix from before.)

Solution:
Expanding along the fourth row containing two zeros:

detA = (1)(−1)

∣∣∣∣∣∣
1 2 4
0 2 3
1 6 1

∣∣∣∣∣∣︸ ︷︷ ︸
expand 2nd row

+0 + 0 + (−4)(+1)

∣∣∣∣∣∣
5 1 2
−1 0 2

1 1 6

∣∣∣∣∣∣︸ ︷︷ ︸
2nd row

= −
[
2(+1)

∣∣∣∣1 4
1 1

∣∣∣∣+ 3(−1)

∣∣∣∣1 2
1 6

∣∣∣∣ ]− 4

[
(−1)(−1)

∣∣∣∣1 2
1 6

∣∣∣∣+ 2(−1)

∣∣∣∣5 1
1 1

∣∣∣∣ ]
= −[2(1− 4)− 3(6− 2)]− 4[(1)(6− 2)− 2(5− 1)]

= −(−6− 12)− 4(4− 8)

= 18 + 16

= 34

Determinants of Triangular Matrices

Definition: A square matrix is called upper triangular if all the entries below the main diagonal
are zero and lower triangular if all entries above the main diagonal are zero.

Clearly a diagonal matrix is both upper and lower triangular.

Example 3-7

1. U =

1 3 5
0 1 2
0 0 10

 is upper triangular.

2. L =


1 0 0 0
2 0 0 0
−2 1 5 0

1 0 1 1

 is lower triangular.
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3. D =

−2 0 0
0 3 0
0 0 10

 is a diagonal matrix (and upper and lower triangular).

Theorem 3-2: If an n × n matrix A is upper triangular, lower triangular, or diagonal, then its
determinant is the product of its entries on the main diagonal,

detA = a11a22 · · · ann .

Proof:
Suppose A is upper triangular given by

A =


a11 a12 . . . a1n

0 a22 . . . a2n

...
...

. . .
...

0 0 . . . ann

 .
Expanding along its first column we have

detA = a11c11

= a11(−1)1+1m11

= a11

∣∣∣∣∣∣∣
a22 . . . a2n

...
. . .

...
0 . . . ann

∣∣∣∣∣∣∣
The resulting submatrix is still upper triangular and we can expand along its first column :

detA = a11a22

∣∣∣∣∣∣∣
a33 . . . a3n

...
. . .

...
0 . . . ann

∣∣∣∣∣∣∣
Continuing this process we have detA = a11a22 · · · ann . A similar argument follows for lower triangular
matrices using row expansion. Finally diagonal matrices are triangular so the theorem follows for them
as well.1

Since an n× n identity matrix I is diagonal with all main diagonal entries equal to one we have that
the product of those entries is also one and we have the following result.

Corollary: If I is an identity matrix, then det I = 1 .

Example 3-8

Compute the determinant of the given matrix.

1. A =

−1 0 0
0 3 0
0 0 −2

 will have a detA = (−1)(3)(−2) = 6 as it is a diagonal matrix.

1A rigorous proof of this theorem using mathematical induction is as follows. Let P (n) be the proposition that the
determinant of an order n upper diagonal matrix is the product of its diagonal elements. Then P (1) is true since then
A = [a11] and detA = a11. Next suppose P (n) is true. Then an (n + 1) × (n + 1) upper diagonal matrix A can be
expanded along its top row to get detA = a11 detA11. But submatrix A11 is of dimension n and is upper triangular
so its determinant, since P (n) is true, is the product of its diagonal elements, detA11 = a22 · · · an+1,n+1 . Therefore
detA = a11a22 · · · an+1,n+1 and P (n+ 1) is true. By mathematical induction the theorem is therefore true for all n .
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2. A =


−1 0 0 0

3 5 0 0
2 1 8 0
−1 1 3 2

 is lower triangular therefore detA = (−1)(5)(8)(2) = −80

3.1.2 Determinant of a Matrix Product

Determinants have the following remarkable property.

Theorem 3-3: Let A and B be n× n matrices then the determinant of their product is the product
of their determinants. In symbols,

det (AB) = det (A) det (B) .

Note, however that the result is not true of the sum of two matrices. In general

det(A+B) 6= detA+ detB .

Example 3-9

Let A =

[
−1 2

3 1

]
and B =

[
1 4
−2 1

]
. Find detA, detB, det (AB) and det (A+B) .

Solution:

detA =

∣∣∣∣−1 2
3 1

∣∣∣∣ = −1− 6 = −7

detB =

∣∣∣∣ 1 4
−2 1

∣∣∣∣ = 1− (−8) = 9

det (AB) =

∣∣∣∣−5 −2
1 13

∣∣∣∣ = −65− (−2) = −63

det (A+B) =

∣∣∣∣0 6
1 2

∣∣∣∣ = 0− 6 = −6

Note that det (AB) = −63 equals (detA)(detB) = (−7)(9) = −63 as predicted by Theorem 3-3,
but that det (A+B) = −6 does not equal detA+ detB = −7 + 9 = 2 .

For three square matrices of same order we have, by the determinant product theorem:

det (ABC) = det[(AB)C] = det(AB) det(C) = det (A) det (B) det (C) .

In general we have the following for any finite number of such matrices.

Corollary 1: Let A1,A2,. . . , Ak be k matrices of dimension n× n. Then

det (A1A2 · · ·Ak) = det (A1) det (A2) · · · det (Ak) .

Setting Ai = A for all i in the previous corollary gives the following for the determinant of a power
of A.
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Corollary 2: Let A be a square matrix and k a positive integer. The determinant of the kth power of
A is the kth power of its determinant. In symbols

det
(
Ak
)

= (detA)k .

We have seen that matrix multiplication does not, in general, commute so AB 6= BA . However, because
multiplication of numbers commutes and determinants are just numbers we have det (BA) = det (AB)

since
det (BA) = det (B) det (A) = det (A) det (B) = det (AB) .

Generalizing to the product of k matrices gives the following final corollary.

Corollary 3: Let A1,A2,. . . , Ak be k matrices of dimension n × n. Then the determinant of the
product A1A2 · · ·Ak equals the determinant of the product of the k matrices evaluated in any order.

3.1.3 Determinant of a Transpose

Theorem 3-4: If A is a square matrix then the determinant of its transpose equals the determinant
of A,

det
(
AT
)

= detA .

Proof:
Consider the case where A is a 2× 2 matrix. Then

A =

[
a11a12

a21a22

]
and therefore AT =

[
a11a21

a12a22

]
.

By direct computation one has:

detA = a11a22 − a12a21 = det
(
AT
)
.

For A of higher dimension one may proceed by induction by doing cofactor expansion along the first
row of A and the first column of AT . The submatrices generated will be the transposes of each other
and of smaller dimension than A so their determinants will be equal by assumption of the truth of the
nth step.

3.1.4 Determinants of Orthogonal Matrices

Orthogonal matrices have some unique properties that distinguish them from other square matrices,
one particular property is related to their determinants.

Theorem 3-5: If A is an orthogonal matrix then det (A) = 1 or det (A) = −1 .

Proof:

Using that A−1 = AT for an orthogonal matrix we have:

1 = det (I) = det
(
A−1A

)
= det

(
ATA

)
= det

(
AT
)

det (A) = det (A) det (A) = [det (A)]2 .

Since 1 = (detA)2 the result follows.
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3.1.5 Determinants of Elementary Matrices

We have seen that an invertible matrix can be decomposed into a product of elementary matrices.
Since the determinant of such a product is just the product of the determinants, knowledge of the
determinants of elementary matrices will be useful.

Example 3-10

Find the determinant of the given elementary matrix.

1. E =


1 0 0 0
0 7 0 0
0 0 1 0
0 0 0 1


The matrix is diagonal with determinant detE = E22(7) = (1)(7)(1)(1) = 7

2. E =

1 0 0
3 1 0
0 0 1


The matrix is lower diagonal with 1’s along the main diagonal, therefore
detE = E21(3) = (1)(1)(1) = 1 .

3. E =

1 0 0
0 0 1
0 1 0


Expanding along the first row gives detE = detP23 = (1)(+1)

∣∣∣∣ 0 1
1 0

∣∣∣∣ = 1(0− 1) = −1

The results of the previous example may be generalized to arbitrary elementary matrix examples of the
three types as given in the following theorem.

Theorem 3-6: Let E be an elementary matrix.

1. If E results from multiplying a row by a nonzero scalar c then detE = detEii(c) = c .

2. If E results from the addition of a multiple of one row to a different row then detE = detEij(c) = 1 .

3. If E results from interchanging two rows then detE = detPij = −1 .

Example 3-11

In Example 2-56 we found the decomposition

A =

0 1 −2
1 0 4
0 0 3

 = (P12)−1(E33(1/3))−1(E13(−4))−1(E23(2))−1 = P12E33(3)E13(4)E23(−2) .

It follows that

detA = detP12 detE33(3) detE13(4) detE23(−2) = (−1)(3)(1)(1) = −3 .
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Note that, as this last example recalls, we must invert the matrices that implement the row reduction
to find the decomposition of A . From Theorem 2-19 and the last theorem it follows that det

(
E−1

)
=

1/ detE . (We will see shortly this is true of any invertible matrix.) As such the determinant of A
is the product of the reciprocals of the determinants of the elementary matrices that implement the
actual row reduction, or, more simply, the reciprocal of the product of those determinants.

3.1.6 Effect of Row Operations on Determinants

In evaluating determinants we have seen the value of doing cofactor expansion along a row or column
dominated by zeros. We have seen previously how Gauss-Jordan elimination was able to produce zeros
in a matrix. We now explore what effect an elementary row operation has on the determinant of a
matrix, with an eye to using such knowledge to simplify determinant calculations. Since row operations
can be implemented by elementary matrices, knowledge of their determinants yields the following useful
theorem.

Theorem 3-7: (Effect of Row/Column Operations on Determinants)

Let A be a square matrix.

1. If one row (column) of A is multiplied by a nonzero scalar c then the determinant changes by a
factor of c.

2. If a scalar multiple of one row (column) is added to another row (column), then the determinant
is unchanged.

3. If two rows (columns) of A are interchanged, then the determinant changes by a factor of −1.

Proof:
Suppose matrix A′ is created by such a row operation on matrix A. Then there exists an elementary
matrix E such that A′ = EA. Then detA′ = det (EA) = det (E) det (A) and the stated result follows
from Theorem 3-6 by consideration of the type of row operation. Next suppose A′ is created by such
an operation on a column of A. Then said operation can be represented by a row operation on the
transpose of A so that A′ = (EAT )T . Then detA′ = det

(
(EAT )T

)
= det

(
EAT

)
= det (E) det

(
AT
)

=
detE detA and the result follows again from Theorem 3-6 .

The theorem has some useful corollaries.

Corollary 1: If A is an n× n matrix and c is a scalar, then det (cA) = cn detA .

This follows by 1. since multiplying A by c is equivalent to multiplying each of the n rows by c .

Corollary 2: If square matrix A has a row (column) that is a scalar multiple of another row (column)
then detA = 0 .

This follows by 2. since if c is the scalar multiple then one can add −c of the one row (column) to the
second to produce a new matrix with a row (column) of all zeros and the same determinant as the
original matrix.

Corollary 3: If square matrix A has two equal rows (columns) then detA = 0 .

This follows by 3. for if we switch the identical rows (columns) then the determinant of the new matrix
equals the negative of the determinant of the original matrix. However the new matrix is just the
original matrix, so detA = −detA which implies detA = 0 . This corollary also follows as a special
case of Corollary 2 with scalar equal to one.

We can now use these procedures to simplify the calculation of the determinant as illustrated in the
following examples.



82 3.1 Defining the Determinant

Example 3-12

Compute the determinant of the given matrix.

1. A =


−1 0 4 0

0 1 3 1
2 2 0 2
−3 1 1 1


Solution:
detA = 0 since A has two identical columns.

2. A =

 3 −2 −1
−6 −4 2
−3 −2 4


Solution:
We perform the following row operations to simplify the matrix and consider the effect on the
determinant.

R2 → R2 + 2R1 (does not change determinant)
R3 → R3 +R1 (no change)

detA =

∣∣∣∣∣∣
3 −2 −1
0 −8 0
0 −4 3

∣∣∣∣∣∣
R2 ↔ R3 (new determinant differs by minus sign so introduce one to preserve equality)

= −

∣∣∣∣∣∣
3 −2 −1
0 −4 3
0 −8 0

∣∣∣∣∣∣
R3 → R3 − 2R2 (no change)

= −

∣∣∣∣∣∣
3 −2 −1
0 −4 3
0 0 −6

∣∣∣∣∣∣
Matrix is now upper diagonal so detA = −(3)(−4)(−6) = −72 .

3. A =


2 3 1 −3
3 0 −1 4
−1 0 1 −2
13 13 0 −13


Solution:
R4 → 1

13R4

Note here that multiplying row 4 by c = 1/13 multiplies the original determinant by 1/13 so
we must multiply by 1/c = 13 to compensate this. Effectively this looks like “factoring out 13”
from the row.

detA = 13

∣∣∣∣∣∣∣∣
2 3 1 −3
3 0 −1 4
−1 0 1 −2

1 1 0 −1

∣∣∣∣∣∣∣∣



Determinants 83

R1 → R1 − 3R4

=

∣∣∣∣∣∣∣∣
−1 0 1 0

3 0 −1 4
−1 0 1 −2

1 1 0 −1

∣∣∣∣∣∣∣∣
Expanding along the second column:

= 13(1)(+1)

∣∣∣∣∣∣
−1 1 0

3 −1 4
−1 1 −2

∣∣∣∣∣∣
R2 → R2 + 2R3

= 13

∣∣∣∣∣∣
−1 1 0

1 1 0
−1 1 −2

∣∣∣∣∣∣
Expand along the last column:

= 13(−2)(+1)

∣∣∣∣−1 1
1 1

∣∣∣∣
= −26(−1− 1) = 52

4. A =


0 1 2 0
4 0 1 0
0 3 2 1
−2 0 1 3


Solution:
We will find the determinant by placing the matrix in upper diagonal form.
R1 ↔ R4

detA = −

∣∣∣∣∣∣∣∣
−2 0 1 3

4 0 1 0
0 3 2 1
0 1 2 0

∣∣∣∣∣∣∣∣
R2 → R2 + 2R1

= −

∣∣∣∣∣∣∣∣
−2 0 1 3

0 0 3 6
0 3 2 1
0 1 2 0

∣∣∣∣∣∣∣∣
R2 ↔ R4

=

∣∣∣∣∣∣∣∣
−2 0 1 3

0 1 2 0
0 3 2 1
0 0 3 6

∣∣∣∣∣∣∣∣
R3 → R3 − 3R2

=

∣∣∣∣∣∣∣∣
−2 0 1 3

0 1 2 0
0 0 −4 1
0 0 3 6

∣∣∣∣∣∣∣∣
R4 → 1

3R4

= 3

∣∣∣∣∣∣∣∣
−2 0 1 3

0 1 2 0
0 0 −4 1
0 0 1 2

∣∣∣∣∣∣∣∣
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R3 ↔ R4

= −3

∣∣∣∣∣∣∣∣
−2 0 1 3

0 1 2 0
0 0 1 2
0 0 −4 1

∣∣∣∣∣∣∣∣
R4 → R4 + 4R3

= −3

∣∣∣∣∣∣∣∣
−2 0 1 3

0 1 2 0
0 0 1 2
0 0 0 9

∣∣∣∣∣∣∣∣ ⇐ Upper Diagonal Matrix

= −3(−2)(1)(1)(9) = 54
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3.2 Adjugate of a Matrix

For any n× n matrix A, recall the i, j-cofactor of A, denoted by cij is given by:

cij = (−1)i+jmij = (−1)i+j detAij

Then A has the cofactor matrix C = [cij ]:

C =


c11 c12 . . . c1n
c21 c22 . . . c2n
...

...
...

cn1 cn2 . . . cnn

 .

Definition: If A is an n× n matrix, then the adjugate of A denoted by adjA is the transpose of the
cofactor matrix of A.

adjA = CT =


c11 c21 . . . cn1

c12 c22 . . . cn2

...
...

...
c1n c2n . . . cnn


The adjugate is also known as the adjunct or the classical adjoint however the word adjoint finds
different usage in linear algebra and, as such, should be avoided.

Example 3-13

Find the adjugate of A if A =

2 −3 1
4 0 −2
3 −1 −3

 .

Solution:
Recall from Example 3-5 we found the cofactor matrix to be

C =



+

∣∣∣∣ 0 −2
−1 −3

∣∣∣∣ − ∣∣∣∣4 −2
3 −3

∣∣∣∣ +

∣∣∣∣4 0
3 −1

∣∣∣∣
−
∣∣∣∣−3 1
−1 −3

∣∣∣∣ +

∣∣∣∣2 1
3 −3

∣∣∣∣ − ∣∣∣∣2 −3
3 −1

∣∣∣∣
+

∣∣∣∣−3 1
0 −2

∣∣∣∣ − ∣∣∣∣2 1
4 −2

∣∣∣∣ +

∣∣∣∣2 −3
4 0

∣∣∣∣


=

 −2 6 −4
−10 −9 −7

6 8 12



Therefore, taking the transpose, one has

adjA = CT =

−2 −10 6
6 −9 8
−4 −7 12



The adjugate of a matrix has the following important property.

Theorem 3-8: If A is an n× n matrix, then:

A(adjA) = (adjA)A = (detA)I ,
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where I is the n× n identity matrix.

Proof:
To show A(adjA) = (detA)I we note that the latter matrix is just the diagonal matrix with detA
along the diagonal. The ith diagonal entry of the product A(adjA) involves the ith row of A and the
ith column of adjA. But, since adjA = CT this is just the ith row of C and we have2

[A(adjA)]ii = ai1ci1 + ai2ci2 + . . .+ aincin ,

which we recognize to be detA evaluated along the ith row of A. For an off-diagonal entry of the
product, i 6= j, one would get

[A(adjA)]ij = ai1cj1 + ai2cj2 + . . .+ aincjn .

One observes that none of the cofactors on the right hand side involve the jth row of A since we delete
the row and column when working out the cofactor and all the entries are in the jth row. The entries
ai1 to ain which multiply the cofactors all sit in a row different from the jth by assumption as well.
Consider then, a new matrix B that is identical to A except in the jth row which is just made to be a
copy of A’s ith row. Then since B has two rows equal we have detB = 0. However cofactor expanding
along the jth row of B gives

bj1cj1 + bj2cj2 + . . .+ bjncjn = detB = 0 ,

where the cofactor entries are identical to those of A by construction. However since the jth row of B
equals the ith row of A we then have

ai1cj1 + ai2cj2 + . . .+ aincjn = 0

thereby proving [A(adjA)]ij = 0 for i 6= j, thereby completing the proof. Similarly one may argue
(adjA)A = (detA)I by considering determinant column cofactor expansions.

Theorem 3-9: If A is a square matrix with detA 6= 0, then A is invertible with

A−1 =
1

detA
(adjA) .

Proof:
Let A be square with detA 6= 0 . From Theorem 3-8 we have

A(adjA) = (adjA)A = (detA)I .

Since detA 6= 0 multiply each term by scalar 1/ detA to get

1

detA
[A(adjA)] =

1

detA
[(adjA)A] =

1

detA
[(detA)I] .

Using the properties of scalar multiplication we have

A

[
1

detA
(adjA)

]
=

[
1

detA
(adjA)

]
A =

[
1

detA
(detA)

]
I .

Since the last term simplifies to I we have A−1 =
1

detA
(adjA) by definition of the inverse.

2Here we have introduced, for convenience, notation for the i-jth entry in a matrix, namely [A]ij = aij .
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Example 3-14

Find the inverse of A =

2 −3 1
4 0 −2
3 −1 −3

 using the adjugate.

Solution:
Evaluating the determinant of A along the second column of A gives

detA = −3(−1)

∣∣∣∣4 −2
3 −3

∣∣∣∣+ 0 + (−1)(−1)

∣∣∣∣2 1
4 −2

∣∣∣∣
= 3(−12 + 6)] + 1(−4− 4)

= −18− 8

= −26

which is nonzero so the inverse exists. From Example 3-13 we found

adjA =

−2 −10 6
6 −9 8
−4 −7 12


Therefore

A−1 =
1

detA
(adjA) = − 1

26

−2 −10 6
6 −9 8
−4 −7 12

 .

Example 3-15

Find the inverse of A =

3 2 −1
1 6 3
2 −4 0

 using the adjugate.

Solution:
Evaluating the determinant with cofactor expansion along the third row gives

detA = 2(+1)

∣∣∣∣2 −1
6 3

∣∣∣∣+ 0 + 4(+1)

∣∣∣∣3 −1
1 3

∣∣∣∣
= 2(6 + 6) + 4(9 + 1)

= 24 + 40

= 64
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which is nonzero so A−1 exists with

A−1 =
1

detA
adjA =

1

detA
CT

=
1

64



+

∣∣∣∣ 6 3
−4 0

∣∣∣∣ −
∣∣∣∣1 3
2 0

∣∣∣∣ +

∣∣∣∣1 6
2 −4

∣∣∣∣
−
∣∣∣∣ 2 −1
−4 0

∣∣∣∣ +

∣∣∣∣3 −1
2 0

∣∣∣∣ − ∣∣∣∣3 2
2 −4

∣∣∣∣
+

∣∣∣∣2 −1
6 3

∣∣∣∣ −
∣∣∣∣3 −1
1 3

∣∣∣∣ +

∣∣∣∣3 2
1 6

∣∣∣∣



T

=
1

64

12 6 −16
4 2 16

12 −10 16

T =
1

64

 12 4 12
6 2 −10

−16 16 16

 =
1

32

 6 2 6
3 1 −5
−8 8 8



Example 3-16

Find the inverse of the 2× 2 matrix A =

[
a b
c d

]
using the adjugate.

Solution: Assuming detA = ad− bc 6= 0 the inverse is

A−1 =
1

detA
adjA =

1

detA
CT =

1

ad− bc

[
(+1)d (−1)c
(−1)b (+1)a

]T
=

1

ad− bc

[
d −b
−c a

]
as we found before.

The converse of Theorem 3-9 also holds with the result:

Theorem 3-10: A square matrix A is invertible if and only if detA 6= 0 . If A is invertible then

det(A−1) =
1

detA
= (detA)−1 .

Proof:
By Theorem 3-9 detA 6= 0 implies A is invertible. For the converse let A be an invertible matrix. Then
there exists A−1 satisfying

AA−1 = I .

Taking the determinant of both sides gives

det(AA−1) = det I .

But the determinant of a product is the product of the determinants and the determinant of an identity
matrix is one, therefore:

(detA)det
(
A−1

)
= 1 .

If detA = 0 we have a contradiction to the last statement as the left hand side would be zero. Therefore
detA 6= 0 . In this case we can divide both sides of the last equation by detA to get det

(
A−1

)
=

1

detA
.
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Example 3-17

Determine whether the given matrix is invertible.

1. A =

[
2 1
3 −1

]
Solution:
detA = −2− 3 = −5 6= 0 therefore A is invertible.

2. A =

[
2 6
1 3

]
Solution:
detA = 6− 6 = 0 therefore A is noninvertible.

3. A =

−1 1 −2
0 1 −3
1 1 −2


Solution:
Using the Rule of Sarrus,

−1 1 −2 −1 1

0 1 −3 0 1

1 1 −2 1 1

detA = (−1)(1)(−2) + (1)(−3)(1) +�����
(−2)(0)(1)− (−2)(1)(1)− (−1)(−3)(1)−�����

(1)(0)(−2)

= 2− 3 + 2− 3

= −2 ,

which is nonzero therefore A is invertible.

Example 3-18

Find the values of m so that the given matrix is invertible.

A =

2 −3 m
2 0 −2
3 −m −3


Solution:
A is invertible if and only if detA 6= 0 . Evaluating detA along the second row we have

detA =

∣∣∣∣∣∣
2 −3 m
2 0 −2
3 −m −3

∣∣∣∣∣∣
= 2(−1)

∣∣∣∣ −3 m
−m −3

∣∣∣∣+ 0 + (−2)(−1)

∣∣∣∣2 −3
3 −m

∣∣∣∣
= −2(9 +m2) + 2(−2m+ 9)

= −18− 2m2 − 4m+ 18

= −2m(m+ 2)

Then detA = 0 implies m = 0 or m = −2. Therefore A is invertible (detA 6= 0) if m 6= 0 and
m 6= −2 .
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The adjugate of a matrix is itself a matrix with determinant and potentially an inverse. This is explored
in the following theorems.

Theorem 3-11: Let A be an n× n matrix with n > 1, then:

det(adjA) = (detA)n−1 .

Proof:
By Theorem 3-8

(adjA)A = (detA)(I) .

Taking the determinant of both sides gives

det[(adjA)(A)] = det[(detA)(I)] .

Since det(AB) = detAdetB, det(cA) = cn detA, and det I = 1 we have

det(adjA) detA = (detA)n det I = (detA)n .

Case I: detA 6= 0. Dividing through the previous equation by detA gives

det(adjA) =
(detA)n

detA
= (detA)n−1 ,

and the theorem holds.

Case II: detA = 0. Then 0n−1 = 0 so we need to prove det(adjA) = 0. We will use proof by
contradiction by supposing det(adjA) 6= 0. Then (adjA)A = (detA)(I) implies

(adjA)A = 0 .

Since det(adjA) 6= 0 Theorem 3-9 implies the matrix adjA itself is invertible with inverse (adjA)−1.
Left-multiplying both sides of (adjA)A = 0 by this inverse implies A = 0 . Then adjA = CT = 0
since all the cofactors of A vanish if A = 0 . But then adjA = 0 implies det(adjA) = 0 and we have
a contradiction to the original supposition. Hence the opposite of the supposition must be true and
det(adjA) = 0 .

Theorem 3-12: If A is an n× n invertible matrix, then adjA is invertible with

(adjA)−1 =
1

detA
A .

Proof:
Let A be an n× n invertible matrix. Then detA 6= 0 by Theorem 3-10. From Theorem 3-8 we have

A(adjA) = (adjA)A = (detA)I .

Since detA 6= 0 multiply each term by scalar 1/ detA to get

1

detA
[A(adjA)] =

1

detA
[(adjA)A] =

1

detA
[(detA)I] .

Using the properties of scalar multiplication we have[
1

detA
A

]
(adjA) = (adjA)

[
1

detA
A

]
=

[
1

detA
(detA)

]
I .

Since the last term simplifies to I we have (adjA)−1 =
1

detA
A by definition of the inverse.
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Example 3-19

Find the determinant and inverse of the cofactor matrix C of matrix A .

Solution:
Since adjA = CT we have (taking the transpose of both sides) C = (adjA)T , therefore

detC = det
[
(adjA)T

]
= det (adjA) = (detA)n−1 .

Also since the transpose is invertible if and only if the original matrix is and adjA is invertible if A
is, then C is invertible when A is invertible and

C−1 =
[
(adjA)T

]−1
=
[
(adjA)−1

]T
=

[
1

detA
A

]T
=

1

detA
AT .
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3.3 Summary of Properties of Determinants

Let A and B be n× n matrices and let c be a scalar, then:

1. det (AB) = (detA)(detB) (generalizable to product of k matrices)

2. det (AB) = det (BA) (generalizable to permutation of k matrices)

3. det
(
Ak
)

= (detA)k

4. det
(
AT
)

= detA

5. det (cA) = cn detA

6. det
(
A−1

)
=

1

detA
= (detA)−1

7. det (adjA) = (detA)n−1

Also we have the two important inverse relations A−1 =
1

detA
(adjA) and (adjA)−1 =

1

detA
A .

More abstract problems involving matrix determinants may be simplified using these determinant
properties.

Example 3-20

Let A and B be 3× 3 invertible matrices such that detA = 2 and detB = −1 .
Compute 1. det

(
ABT

)
2. det

(
2ABAT

)
3. det

[
−(adjA)2B4

]
4. det

(
B−1A−1BA3B−1

)
.

Solution:

1. det
(
ABT

)
= (detA)(detBT ) = (detA)(detB) = (2)(−1) = −2

2. det
(
2ABAT

)
= 23(detA)(detB)(detAT ) = 8(2)(−1)(2) = −32

3. det
[
−(adjA)2B4

]
= (−1)3[det(adjA)]2(detB)4 = −(23−1)2(−1)4 = −16

4. det
(
B−1A−1BA3B−1

)
= det

(
A−1AA2B−1BB−1

)
= det

(
IA2B−1I

)
= (detA)2(detB)−1

= 22 1

(−1)
= −4

Note in question 4. how effectively one could just add the exponents of the matrices, treating the
inverses as exponents of -1, to get the simplified answer.

Example 3-21

If det

[
a b
c d

]
= 3, compute det

(
1
2A
−1
)
if A =

[
a− b 5b
c− d 5d

]
.

Solution:

We have det

(
1

2
A−1

)
=

(
1

2

)2

det
(
A−1

)
=

1

4 detA
so we need to evaluate detA.

detA =

∣∣∣∣a− b 5b
c− d 5d

∣∣∣∣
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Do the following column operations:
C2 → 1

5C2

detA = 5

∣∣∣∣a− b b
c− d d

∣∣∣∣
C1 → C1 + C2

detA = 5

∣∣∣∣a b
c d

∣∣∣∣ = (5)(3) = 15

Therefore
det

(
1

2
A−1

)
=

1

4 detA
=

1

(4)(15)
=

1

60
.

3.3.1 Determinants and Linear Systems

We have seen that in determined linear systems for which the number of unknowns equals the number
of equations results in a square coefficient matrix A. Such matrices have determinants and, as such,
our knowledge of determinants can directly inform this restricted class of linear systems. Despite this
limitation to linear systems of n equations in n unknowns, it should be noted that many applications
naturally result in such systems.

Since matrix A is invertible if and only if its determinant is nonzero we have the following result
regarding linear systems which follows from Theorem 2-18.

Theorem 3-13: Let A be a square matrix. Then the determined linear system Ax = b has a unique
solution if and only if detA 6= 0 .

Example 3-22

For what values of m does the following linear system have:

1. A unique solution?

2. No solution?

3. Infinitely many solutions?

x−my + 4z = 2

mx− 2m2y + (2m3 + 4m)z = 2m

−2x+ (1 + 2m)y − 9z = −3

Solution:

The coefficient matrix is A =

 1 −m 4
m −2m2 2m3 + 4m
−2 1 + 2m −9

 .
Expanding the determinant along the first row gives:

detA = (1)(+1)

∣∣∣∣ −2m2 2m2 + 4m
1 + 2m −9

∣∣∣∣+ (−m)(−1)

∣∣∣∣m 2m3 + 4m
−2 −9

∣∣∣∣+ 4(+1)

∣∣∣∣m −2m2

−2 1 + 2m

∣∣∣∣
= 18m2 − (2m3 + 4m)(1 + 2m) +m[−9m+ 2(2m3 + 4m)] + 4[m(1 + 2m)− 4m2]

= 18m2 − 2m3 − 4m4 − 4m− 8m2 − 9m2 + 4m4 + 8m2 + 4m+ 8m2 − 16m2

= −2m3 +m2
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Then 0 = detA = −2m3 +m2 = m2(−2m+ 1) if and only if m = 0 or m = 1/2.

Since a unique solution occurs when detA 6= 0 this is when m 6= 0 and m 6= 1/2 .

When m = 0 the augmented matrix for the system is

[A|B] =

 1 0 4 2
0 0 0 0
−2 1 −9 −3


⇓

R2 ↔ R3

 1 0 4 2
−2 1 −9 −3

0 0 0 0


⇓

R2 → R2 + 2R1

1 0 4 2
0 1 −1 1
0 0 0 0


Then rank(A) = rank([A|B]) = 2 is less than the number of unknowns (3). Therefore m = 0 gives
infinitely many solutions.

When m = 1/2 the augmented matrix for the system is

[A|B] =

 1 − 1
2 4 2

1
2 − 1

2
9
4 1

−2 2 −9 −3


⇓

R1 → 2R1

R2 → 4R2

 2 −1 8 4
2 −2 9 4
−2 2 −9 −3


⇓

R2 → R2 −R1

R3 → R3 +R1

2 −1 8 4
0 −1 1 0
0 1 −1 1


⇓

R3 → R3 +R2

2 −1 8 4
0 −1 1 0
0 0 0 1


Here 2 = rank(A) < rank([A|B]) = 3 or, equivalently, the bottom row yields a contradiction.
Therefore m = 1

2 gives no solution.

Note that this example shows that for almost any value of m the determined system produces a
unique solution. The events of the determined system having no solution or an infinite number of
solutions are exceptional. In linear systems arising from physical problems one should suspect that
the problem has some symmetry or constraint when such exceptional cases arise.
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3.4 Cramer’s Rule

Let Ax = b be a determined linear system of n equations in n unknowns where detA 6= 0 and:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
an1 an2 . . . ann

 b =


b1
b2
...
bn

 .
Define A(1) to be the matrix given by

A(1) =


b1 a12 . . . a1n

b2 a22 . . . a2n

...
...

...
bn an2 . . . ann

 ,
i.e. Replace the first column of A by the right hand side b . If we denote A = [a1a2 · · ·an] where ai is
a column vector of A, then

A(1) = [ba2 · · ·an] .

In general let A(i) denote the matrix given by replacing the ith column of A, ai, by b:

A(i) =


a11 . . . a1,i−1 b1 a1,i+1 . . . a1n

a21 . . . a2,i−1 b2 a2,i+1 . . . a2n

...
...

...
...

...
an1 . . . an,i−1 bn an,i+1 . . . ann

 = [a1 · · ·ai−1bai+1 · · ·an]

Theorem 3-14: Let Ax = b be a determined linear system of n equations in n unknowns where
detA 6= 0 . The unique solution x = [x1, . . . , xn]T to the system is then given by

x1 =
detA(1)

detA
. . . xi =

detA(i)

detA
. . . xn =

detA(n)

detA
.

This is called Cramer’s Rule.

Proof:
Since detA 6= 0 A is invertible and Ax = b has a unique solution given by x = A−1b . Evaluating the
latter gives:

x = A−1b

=
1

detA
(adjA)b

=
1

detA
CT b

=
1

detA


c11 c21 . . . cn1

c12 c22 . . . cn2

...
...

...
c1n c2n . . . cnn



b1
b2
...
bn


Multiplying out the right hand side gives

x1

x2

...
xn

 =
1

detA


b1c11 + b2c21 + . . .+ bncn1

b1c12 + b2c22 + . . .+ bncn2

...
b1c1n + b2c2n + . . .+ bncnn


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Equating the ith entry on each side gives

xi =
1

detA
(b1c1i + b2c2i + . . .+ bncni) (i = 1, . . . , n) .

But evaluating the determinant of A(i) along the ith column gives

detA(i) = b1c1i + b2c2i + . . .+ bncni .

Therefore
xi =

detA(i)

detA
(i = 1, . . . , n) .

Note Cramer’s Rule is not an efficient method for solving a linear system compared to Gaussian
elimination. It does have theoretical utility, however, as it gives a closed form for the solution of a
determined system having a unique solution.

Example 3-23

Solve the linear system using Cramer’s Rule if possible.

3x+ 2y + 3z = 4

−2x− 4y + 2z = −12

2x+ 3z = 0

Solution:

A =

 3 2 3
−2 −4 2

2 0 3

 detA = 2(+1)(4 + 12) + 3(+1)(−12 + 4) = 32− 24 = 8

detA 6= 0 so Cramer’s Rule will work to find the unique solution.

A(1) =

 4 2 3
−12 −4 2

0 0 3

 detA(1) = 3(+1)(−16 + 24) = 24

A(2) =

 3 4 3
−2 −12 2

2 0 3

 detA(2) = 2(+1)(8 + 36) + 3(+1)(−36 + 8) = 88− 84 = 4

A(3) =

 3 2 4
−2 −4 −12

2 0 0

 detA(3) = 2(+1)(−24 + 16) = −16

Using Cramer’s Rule we have the solution:

x =
detA(1)

detA
=

24

8
= 3 y =

detA(2)

detA
=

4

8
=

1

2
z =

detA(3)

detA
=
−16

8
= −2 .

Example 3-24

Solve the linear system using Cramer’s Rule if possible.

3x1 + x2 = −1

−2x1 − 4x2 + 3x3 = 2

−x1 − 7x2 + 6x3 = 3
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Solution:

A =

 3 1 0
−2 −4 3
−1 −7 6

 detA = 3(+1)(−24 + 21) + (1)(−1)(−12 + 3) = −9 + 9 = 0

The determined system does not have a unique solution and Cramer’s Rule cannot be applied.
Reducing the augmented matrix gives

[A|B] =

 3 1 0 −1
−2 −4 3 2
−1 −7 6 3


⇓

R1 ↔ R3

−1 −7 6 3
−2 −4 3 2

3 1 0 −1


⇓

R1 → −R1

R2 → R2 − 2R1

R3 → R3 + 3R1

1 7 −6 −3
0 10 −9 −4
0 −20 18 8


⇓

R2 → 1
10R2

R3 → R3 + 2R2

1 7 −6 −3

0 1 − 9
10 − 4

10

0 0 0 0


⇓

R1 → R1 − 7R2

 1 0 3
10 − 2

10

0 1 − 9
10 − 4

10

0 0 0 0


The system has infinitely many solutions. The final augmented matrix corresponds to the equivalent
linear system:

x1 +
3

10
x3 = − 2

10

x2 −
9

10
x3 = − 4

10
0 = 0

Setting free (independent) variable x3 = s we then solve for the leading variables by back-
substitution:

• x2 − 9
10x3 = − 4

10 =⇒ x2 − 9
10s = − 4

10 =⇒ x2 = − 4
10 + 9

10s

• x1 + 3
10x3 = − 2

10 =⇒ x1 + 3
10s = − 2

10 =⇒ x1 = − 2
10 − 3

10s
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The general solution is therefore

x =

x1

x2

x3

 =

−
2
10

− 4
10

0

+ s

−
3
10
9
10

1

 ,
where s is a parameter.

Example 3-25

Solve the linear system using Cramer’s Rule if possible.

x1 + 2x3 = 6

−3x1 + 4x2 + 6x3 = 30

−x1 − 2x2 + 3x3 = 8

Solution:

A =

 1 0 2
−3 4 6
−1 −2 3

 detA = (1)(+1)(12 + 12) + 2(+1)(6 + 4) = 24 + 20 = 44 6= 0

A(1) =

 6 0 2
30 4 6
8 −2 3

 detA(1) = 6(+1)(12 + 12) + 2(+1)(−60− 32) = 144− 184 = −40

A(2) =

 1 6 2
−3 30 6
−1 8 3

 detA(2) = 1(+1)(90− 48) + 6(−1)(−9 + 6) + 2(+1)(−24 + 30)

= 42 + 18 + 12 = 72

A(3) =

 1 0 6
−3 4 30
−1 −2 8

 detA(3) = 1(+1)(32 + 60) + 6(+1)(6 + 4) = 92 + 60 = 152

Using Cramer’s Rule we have the solution:

x1 =
detA(1)

detA
= −40

44
= −10

11
x2 =

detA(2)

detA
=

72

44
=

18

11
x3 =

detA(3)

detA
=

152

44
=

38

11
.
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Example 3-26

In the following system find the value(s) of a such that a solution exists with y = 0 .

x− 3z = 1

ax+ 2y = 0

y + z = a

Solution:
We are solving only for y so we need only consider A and A(2) .

A =

1 0 −3
a 2 0
0 1 1

 detA = 1(+1)(2− 0)− 3(+1)(a− 0) = 2− 3a

A unique solution exists if 2− 3a 6= 0, and so a 6= 2
3 .

A(2) =

1 1 −3
a 0 0
0 a 1

 detA(2) = a(−1)(1 + 3a) = −a(1 + 3a)

Using Cramer’s Rule:

0 = y =
detA(2)

detA
=
−a(1 + 3a)

2− 3a
.

The solution requires the numerator vanish and the denominator be non-zero:

−a(1 + 3a) = 0 and 2− 3a 6= 0

Thus (a = 0 or 1 + 3a = 0) and a 6= 2/3 , or equivalently (a = 0 or a = −1/3) and a 6= 2/3 which
reduces logically to just the solution a = 0 or a = −1/3 . In the case a = 2/3 there are potentially
solutions with y = 0 as this corresponds to the case where detA = 0 and Cramer’s Rule could not
be applied. Putting that value of a into the original system creates a system with augmented matrix1 0 −3 1

2
3 2 0 0
0 1 1 2

3

 .
The reader may verify this is an inconsistent system (no solution) .
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4.1 Vectors in Rn

Recall when we introduced the ordered n-tuple (x1, x2, . . . , xn) in Rn we labelled it x and represented
it by the column matrix

x =


x1

x2

...
xn

 = [x1 x2 . . . xn]T

At that time we mentioned it could be used to represent a vector. We now make more precise the
concept of a vector.

Definition: A vector is a quantity having both a magnitude and direction.

Physical examples of vectors are displacement which has both a magnitude (distance travelled) as well
as a direction (like east) associated with it. Other important vectors include velocity, acceleration,
momentum, and force. Notationally vectors will be identified by boldfaced lower case letters in this
text such as u. In handwritten form it is common to put an arrow on top of the letter or a bar above
or below the letter, i.e. ~u, ū, or u

¯
.

Geometrically a vector quantity is an arrow having length and direction. To characterize them
mathematically we introduce the related concept of a directed line segment. We visualize the following
in two or three dimensions but we can generalize to n dimensions.

Definition: Let O and P be two points. The line segment from point O (called the tail or initial
point) to the point P (called the tip or terminal point) is called the directed line segment
from O to P and is denoted by the symbol

−−→
OP .

−→
OP

O

P

A directed line segment is almost the same as a vector except a vector is independent of its position in
space. With that in mind we define the equivalence of two directed line segments as follows.

Definition: Two directed line segments
−−→
OP and

−−→
QR are said to be equivalent if they have the same

direction and length.

In the following diagram
−−→
OP is equivalent to

−−→
QR .

−→
OP

−→
QR

O

P

Q

R
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If we fix a point in space, O, call it the origin, then every directed line segment will be equivalent to
some directed line segment whose initial point is O. Any quantity having magnitude and direction can
also be represented by one such directed line segment. Hence an alternate working definition for a
vector is as follows:1

Definition: A vector is a directed line segment from the origin O to a point P .

The connection to ordered n-tuples now comes about by introducing a Cartesian coordinate system. A
vector can be completely characterized by the coordinates of the terminal (tip) point P . In two and
three dimensions, now using the same letter for the tip point U as the vector u, this becomes:

u

x

y

O

U = (u1, u2) u

x
O

y

z

U = (u1, u2, u3)

In summary:

• In R2 a vector is written as u = (u1, u2) =

[
u1

u2

]
.

• In R3 a vector is written as u = (u1, u2, u3) =

u1

u2

u3

 .

• In Rn a vector is written as u = (u1, u2, . . . , un) = [u1 u2 . . . un]T .

The numbers u1, u2, . . . , un are called the components of the vector.

Vector equality can now be defined in terms of components.

Definition: Two vectors, u and v in Rn are equal if their corresponding components are equal, i.e.

ui = vi for i = 1, . . . , n .

Definition: The zero vector in Rn has all components equal to zero.

• In R2: 0 = (0, 0) .

• In R3: 0 = (0, 0, 0) .

• In Rn: 0 = ( 0, 0, . . . , 0︸ ︷︷ ︸
n times

) .

1To be even more precise we could characterize a vector as the unique representative of the equivalence class of
directed line segments whose tail is at the origin O .
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4.1.1 Vector Length

Definition: The length (or norm or magnitude) of a vector u is the distance from the origin to
the terminal point of u and is denoted by ‖u‖ . In terms of the components of u,

• In R2: ‖u‖ =
√
u2

1 + u2
2 .

• In R3: ‖u‖ =
√
u2

1 + u2
2 + u2

3 .

• In Rn: ‖u‖ =
√
u2

1 + u2
2 + . . .+ u2

n .

Here the length in R2 is as expected from the Pythagorean Theorem.

u

x

y

u1

u2

In R3 the length ‖u‖ is the length of the hypotenuse of a triangle the base of which lies in the x-y plane
having length

√
u2

1 + u2
2 and whose height is |u3|. It follows, again by the Pythagorean Theorem, that

‖u‖ =

√(√
u2

1 + u2
2

)2

+ |u3|2 =
√
u2

1 + u2
2 + u2

3 .

u

x

z

u2
u1

u3

y

Example 4-1

Find the length ‖u‖ of the given vector.

1. u = (−1, 1)

Solution:
‖u‖ =

√
(−1)2 + 12 =

√
2
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2. u =

 2
−1
−3


Solution:
‖u‖ =

√
22 + (−1)2 + (−3)2 =

√
14

Only the zero vector has a vanishing length.

Theorem 4-1: ‖u‖ = 0 if and only if u = 0 .

Definition: If the length of a vector is 1, ‖u‖ = 1, then the vector u is called a unit vector.

Example 4-2

Show the vector u =
(

1√
2
, 1√

2
, 0
)
in R3 is a unit vector.

Solution:
Finding the length of u,

‖u‖ =
√
u2

1 + u2
2 + u2

3 =

√(
1√
2

)2

+

(
1√
2

)2

+ 02 =

√
1

2
+

1

2
+ 0 =

√
1 = 1 ,

shows u has unit length and hence is a unit vector.

It is convenient to define unit vectors along the direction of the positive coordinate axes as follows.

• In R2:

– The unit vector along the positive x-axis is i = (1, 0) .

– The unit vector along the positive y-axis is j = (0, 1) .

• In R3:

– The unit vector along the positive x-axis is i = (1, 0, 0) .

– The unit vector along the positive y-axis is j = (0, 1, 0) .

– The unit vector along the positive z-axis is k = (0, 0, 1) .

x

z

y

O
i

k

j

x
O

i

j

y

For Rn it is convenient to generalize this approach.



106 4.1 Vectors in Rn

Definition: An elementary vector in Rn is a vector that has one component equal to 1 and all
other components equal to 0. If the 1 occurs as the ith component, then the elementary vector is
denoted by ei .

• In R2:

– e1 = (1, 0) = i .
– e2 = (0, 1) = j .

• In R3:

– e1 = (1, 0, 0) = i .
– e2 = (0, 1, 0) = j .
– e3 = (0, 0, 1) = k .

Note that when writing unit vectors by hand a common convention is to write î, ĵ, k̂, ê1, etc. to
indicate the vector has unit length.

4.1.2 Scalar Multiplication

Recall we have used the term scalar to refer to an element of the set of real numbers R . Scalars
physically represent quantities such as temperature or length which do not have a direction.2 We can
define multiplication of a vector by a scalar.

Definition: Let a be a scalar and u be a vector. The scalar multiple of u by a is a vector given by:

• In R2: au = (au1, au2)

• In R3: au = (au1, au2, au3)

• In Rn: au = (au1, au2, . . . , aun)

Note since a vector written as a column matrix is just a matrix, this is consistent with our previous
definition of scalar multiplication of a matrix.

Example 4-3

Find au for the given scalar and vector.

1. a = −2 , u = (−1, 2)

Solution:
au = −2u = ((−2)(−1), (−2)(2)) = (2,−4)

2. a = 3 , u =

 2
3
−1


Solution:

au = 3u =

 6
9
−3


2At a more technical level, scalars represent quantities that are numbers that are independent of the choice of

coordinate system. So, for instance, the value of the first coordinate of a vector, while being a number, would not be a
scalar as a different choice of axes could be made which would make the first coordinate have a different value. The
length of a vector however would be independent of such a choice and is a proper scalar.
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3. a = 2 , u = (−1, 1, 3, 5)

Solution:
au = 2u = (−2, 2, 6, 10)

Definition: Two nonzero vectors u and v are collinear if the lines they determine are one and the
same. i.e. if their terminal points U and V along with the origin O are collinear.

u

v

U

O

V

Theorem 4-2: Let u be a nonzero vector and let a be a scalar. Then u and au are collinear and:

1. If a > 0, then u and au have the same direction (parallel).

2. If a < 0, then u and au have opposite direction (antiparallel).

3. ‖au‖ = |a| ‖u‖

If nonzero vector u is not a unit vector we can find a unit vector along the same direction as u by
multiplying it by the scalar that is the reciprocal of its length.

Theorem 4-3: Let u be a nonzero vector then a unit vector in the same direction as u is given by:

1

‖u‖u .

Proof:
Since u 6= 0, Theorem 4-1 shows ‖u‖ 6= 0. Then using Theorem 4-2 with positive scalar a = 1/ ‖u‖
shows au is directed along u and has length∥∥∥∥ 1

‖u‖u
∥∥∥∥ =

∣∣∣∣ 1

‖u‖

∣∣∣∣ ‖u‖ =
1

‖u‖ ‖u‖ = 1 .

Example 4-4

Find a unit vector parallel to the given vector.

1. u = (1,−1, 2)

Solution:
‖u‖ =

√
12 + (−1)2 + 22 =

√
6

The unit vector is
1

‖u‖u =
1√
6

(1,−1, 2) .
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2. u = (−1, 0,−2, 2)

Solution:
‖u‖ =

√
(−1)2 + 0 + (−2)2 + 22 =

√
9 = 3

The unit vector is
1

‖u‖u =
1

3
(−1, 0,−2, 2) .

4.1.3 Vector Addition

Definition: Let u and v be nonzero vectors in R2 , R3 or Rn. The sum of u and v is the resultant
vector u+ v given by:

• In R2: u+ v = (u1 + v1, u2 + v2) .

• In R3: u+ v = (u1 + v1, u2 + v2, u3 + v3) .

• In Rn: u+ v = (u1 + v1, u2 + v2, . . . , un + vn) .

Thus vector addition is done componentwise. This is consistent with matrix addition and our identifica-
tion of vectors with column matrices.

Example 4-5

Find the sum of the given vectors.

1. u = (1,−1, 2) , v = (−5, 4, 3)
Solution:
u+ v = (1− 5,−1 + 4, 2 + 3) = (−4, 3, 5)

2. u =


3
−1

3
2

 , v =


−1

2
−2

3


Solution:

u+ v =


3 + (−1)
−1 + 2

3 + (−2)
2 + 3

 =


2
1
1
5



The componentwise addition of vectors has the following geometric interpretation in two and three
dimensions. The resultant vector arising from adding two (or more) vectors is the vector formed by
joining the vectors successively from tip to tail as shown in the following diagram.
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u2

v2

u1 + v1

u1

u2 + v2

v1

u

v

u+ v

x

y

O

Here the vector v is shown with its tail translated from the origin O to the tip of u. If we remove the
coordinate system scaffolding we see that vector addition is a geometrical property independent of
coordinates. Noting that our above definition implies that v + u = u+ v (vector addition commutes)
the resultant can be found by placing the vector v first as well and one has the following diagram:

v

u

u+ v

O

As the diagram shows the two vectors with tails placed at the origin form a parallelogram, the diagonal
of which is the resultant vector with tail placed at the origin. The is known as the parallelogram law
of vector addition. In three dimensions the two vectors determine a plane in which the parallelogram
lies.

4.1.4 Vector Components Along Coordinate Axes

Consider the vector u = (u1, u2, u3) = (3, 2, 4). Then

u =

3
2
4

 =

3
0
0

+

0
2
0

+

0
0
4

 = 3

1
0
0

+ 2

0
1
0

+ 4

0
0
1

 = 3i+ 2j + 4k .

Here 3i is called the vector component of u along i and geometrically the vector u is the sum of
these vectors directed along the coordinate axes.

u

x

z

y

u2ju3k

u1iO



110 4.1 Vectors in Rn

Generalizing, we have the following decomposition of vectors into their vector components along
coordinate axes.

• In R2: u = (u1, u2) = u1i+ u2j .

• In R3: u = (u1, u2, u3) = u1i+ u2j + u3k .

• In Rn: u = (u1, u2, . . . , un) = u1e1 + u2e2 + · · ·+ unen .

Example 4-6

One can go back and forth between vector components as shown in the following examples:

1. u = (−1, 2) = −i+ 2j

2. u =


3
−4

5
2

 = 3e1 − 4e2 + 5e3 + 2e4

3. u = 2i+ 3j − k = (2, 3,−1)

In physical problems writing vectors in terms of elementary vectors can often simplify calculations
involving the vectors.

4.1.5 Vector Subtraction

Definition: Let u be a vector. The negative of u, denoted −u, is defined to be (−1)u.

• In R2: −u = (−u1,−u2)

• In R3: −u = (−u1,−u2,−u3)

• In Rn: −u = (−u1,−u2, . . . ,−un)

Theorem 4-2 implies that −u has the same length as u but is directed in the opposite direction (assuming
u 6= 0). Vector subtraction can now be defined in terms of vector addition by adding the negative as
follows.

Definition: Let u and v be nonzero vectors in R2 , R3 or Rn. The difference of u and v is the vector
u− v given by

u− v = u+ (−v) .

In terms of components it is given by

• In R2: u− v = (u1 − v1, u2 − v2) .

• In R3: u− v = (u1 − v1, u2 − v2, u3 − v3) .

• In Rn: u− v = (u1 − v1, u2 − v2, . . . , un − vn) .

Once again, the definition is consistent with the interpretation of vectors as column matrices and matrix
subtraction. Geometrically we add the negative vector −v to u tip-to-tail to get the difference u− v.
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v

u

−v
u− v

O

Example 4-7

Find the difference u− v of the given vectors.

1. u = (1,−1, 2) , v = (−5, 4, 3)

Solution:
u− v = (1− (−5),−1− 4, 2− 3) = (6,−5,−1)

2. u =


3
−1

3
2

 , v =


−1

2
−2

3


Solution:

u− v =


3− (−1)
−1− 2

3− (−2)
2− 3

 =


4
−3

5
−1



The difference of vectors has a convenient geometric interpretation in terms of the parallelogram induced
by u and v which we introduced with vector addition. If we draw the other diagonal as the directed
line segment from the point U at the tip of u to the point V at the tip of v and we draw the vector
v − u we see that the two will be equivalent.

v

u

−−→
UV

−u

v − u
U

O

V

In other words, the vector v − u is essentially just the other diagonal between the tips of the two
vectors. The correct direction is easily remembered since we must have u+ (v − u) = v when added
tip-to-tail. We summarize the discussion with the following theorem.

Theorem 4-4: Let U and V be distinct points in Rn with associated vectors u and v. Then the vector
v−u is equivalent to the directed line segment

−−→
UV from U to V . In other words,

−−→
UV is parallel to the

vector v − u and the length of the segment (the distance between U and V ) equals the length of that
difference, ‖v − u‖ .
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Example 4-8

Find the vector that is equivalent to the directed line segment from P (1, 5, 7) to Q(2, 1, 0) and use it
to find the distance between P and Q.

Solution:
The vectors associated with the points are p = (1, 5, 7) and q = (2, 1, 0) . The directed line segment−−→
PQ is then equivalent to the difference

q − p = (2, 1, 0)− (1, 5, 7)

= (2− 1, 1− 5, 0− 7)

= (1,−4,−7) .

The distance between P and Q equals

‖q − p‖ =
√

12 + (−4)2 + (−7)2 =
√

1 + 16 + 49 =
√

66 .

The previous discussion suggests the following definition for the distance between two vectors in Rn as
the distance between their terminal points (tips).

Definition: The distance d(u,v) between two vectors u and v is defined to be

d(u,v) = ‖v − u‖ .

Specifically one has:

• In R2: d(u,v) =
√

(v1 − u1)2 + (v2 − u2)2 .

• In R3: d(u,v) =
√

(v1 − u1)2 + (v2 − u2)2 + (v3 − u3)2 .

• In Rn: d(u,v) =
√

(v1 − u1)2 + (v2 − u2)2 + . . .+ (vn − un)2 .

Example 4-9

Find the distance between the given vectors.

1. u = (−1, 1), v = (2, 5)

Solution:

d(u,v) = ‖v − u‖
=
√

(2− (−1))2 + (5− 1)2

=
√

9 + 16 =
√

25 = 5

2. u =

 2
−1
−3

 , v =

−1
4
2


Solution:

d(u,v) = ‖v − u‖
=
√

(−1− 2)2 + (4− (−1))2 + (2− (−3))2

=
√

9 + 25 + 25 =
√

59
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4.1.6 Properties of Vector Operations

The following properties of vector addition and scalar multiplication are analogous to the more general
matrix properties of Theorem 2-4 and indeed follow from that with the identification of vectors with
column matrices.

Theorem 4-5: Let u, v, and w be vectors in Rn and let a and b be scalars. The following are true:

u+ v = v + u (commutative law for addition)(1)
(u+ v) +w = u+ (v +w) (associative law for addition)(2)

u+ 0 = u(3)
u+ (−u) = 0(4)

(ab)u = a(bu) = b(au)(5)
a(u+ v) = au+ av (scalar distributive law)(6)
(a+ b)u = au+ bu (scalar distributive law)(7)

1u = u(8)
0u = 0(9)

Proof :
Selected proofs for the two-dimensional case (n = 2) are as follows. The more general case is analogous.
Let u = (u1, u2) , v = (v1, v2) , w = (w1, w2) be vectors and a and b scalars.

(1) commutative law:

u+ v = (u1 + v1, u2 + v2)

= (v1 + u1, v2 + u2)

= (v1, v2) + (u1, u2)

= v + u

(2) associative law:

(u+ v) +w = (u1 + v1, u2 + v2) + (w1, w2)

= (u1 + v1 + w1, u2 + v2 + w2)

= (u1 + (v1 + w1), u2 + (v2 + w2))

= (u1, u2) + (v1 + w1, v2 + w2)

= u+ (v +w)

(7) scalar distributive law:

(a+ b)u = (a+ b)(u1, u2)

= ((a+ b)u1, (a+ b)u2)

= (au1 + bu1, au2 + bu2)

= (au1, au2) + (bu1, bu2)

= a(u1, u2) + b(u1, u2)

= au+ bu
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4.2 Dot Product

Definition: Let u and v be two vectors in R2 , R3 or Rn. Then the dot product (or the inner
product or scalar product) of u with v is a scalar denoted u · v given by:

• In R2: u · v = u1v1 + u2v2 .
• In R3: u · v = u1v1 + u2v2 + u3v3 .
• In Rn: u · v = u1v1 + u2v2 + · · ·+ unvn .

Writing the vectors as column matrices the dot product effectively equals

u · v = uTv ,

provided we interpret the latter as the entry of the resulting 1× 1 matrix.

Example 4-10

Compute the dot product of the given vectors.

1. u = (1,−2,−1) , v = (3,−1, 1)

Solution:
u · v = 1(3) + (−2)(−1) + (−1)(1) = 3 + 2− 1 = 4

2. u =


−1

1
2
3

 , v =


5
2
3
−2


Solution:

u·v = uTv =
[
−1 1 2 3

] 
5
2
3
−2

 = [(−1)(5)+1(2)+2(3)+3(−2)] = [(−5)+2+6−6] = [−3] ,

which we interpret as the scalar −3 .

4.2.1 Properties of the Dot Product

The following properties follow from the definition of the dot product.

Theorem 4-6: Let u , v and w be vectors in Rn and a be a scalar. The following are true:

u · v = v · u (commutative law)(1)
a(u · v) = (au) · v = u · (av)(2)

u · (v +w) = u · v + u ·w (distributive law)(3)
u · 0 = 0(4)

u · u = ‖u‖2(5)

Proof :
Selected proofs for the two-dimensional case (n = 2) are as follows. The more general case is analogous.
Let u = (u1, u2) , v = (v1, v2) , w = (w1, w2) be vectors and a a scalar.
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(1) commutative law:

u · v = u1v1 + u2v2

= v1u1 + v2u2

= v · u

(3) distributive law:

u · (v +w) = (u1, u2) · (v1 + w1, v2 + w2)

= u1(v1 + w1) + u2(v2 + w2)

= u1v1 + u1w1 + u2v2 + u2w2

= (u1v1 + u2v2) + (u1w1 + u2w2)

= u · v + u ·w

(5) u · u = ‖u‖2:

u · u = (u1, u2) · (u1, u2)

= u1u1 + u2u2

= u2
1 + u2

2

=

(√
u2

1 + u2
2

)2

= ‖u‖2

The relationship between vector length and the dot product can be exploited to obtain further results.

Theorem 4-7: The lengths of the sum and difference of two vectors u and v satisfy

‖u+ v‖2 + ‖u− v‖2 = 2 ‖u‖2 + 2 ‖v‖2 .

Proof:

‖u+ v‖2 + ‖u− v‖2 = (u+ v) · (u+ v) + (u− v) · (u− v)

= (u · u+���u · v +���v · u+ v · v) + (u · u−���u · v −���v · u+ v · v)

= 2u · u+ 2v · v
= 2 ‖u‖2 + 2 ‖v‖2

In terms of the relationship of u+v and u−v to the diagonals of the parallelogram induced by vectors
u and v, the previous theorem has a geometrical interpretation in two and three dimensions. It proves
that the sum of the squares of the diagonal lengths of a parallelogram equals the sum of the squares of
its side lengths, since two sides have length ‖u‖ and two have length ‖v‖ .

v

u
O
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4.2.2 Angle between Vectors

Two nonzero vectors in two or three dimensions will lie in a plane with an angle θ between them formed
at the origin O between 0 and 180 degrees (π radians).

u

v

θ

O

The dot product allows us to calculate this angle and conversely the angle can be used to evaluate the
dot product.

Theorem 4-8: Let u and v be vectors in R2 or R3 and let θ be the angle between u and v with
0 ≤ θ ≤ π. Then:

u · v = ‖u‖ ‖v‖ cos θ .

If u 6= 0 and v 6= 0 then
cos θ =

u · v
‖u‖ ‖v‖ .

Proof:
The result u · v = ‖u‖ ‖v‖ cos θ holds trivially if either u or v (or both) are zero vectors, so assume
neither are zero vectors. Let OUV be the triangle determined by the vectors u and v with U and V
being the terminal points of their respective vectors.

u

−−→
UV

v c

θ
v − u a

b

O

U

V

Let a = ‖u‖ and b = ‖v‖. If c is the length of directed line segment
−−→
UV then by Theorem 4-4

c = ‖v − u‖ . Applying the law of cosines one has

c2 = a2 + b2 − 2ab cos θ .

This implies
‖v − u‖2 = ‖u‖2 + ‖v‖2 − 2 ‖u‖ ‖v‖ cos θ .
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Expanding the square lengths using the dot product and simplifying gives:

(v − u) · (v − u) = (u · u) + (v · v)− 2 ‖u‖ ‖v‖ cos θ

���v · v − v · u− u · v +���u · u =���u · u+���v · v − 2 ‖u‖ ‖v‖ cos θ

−u · v − u · v = −2 ‖u‖ ‖v‖ cos θ

−2u · v = −2 ‖u‖ ‖v‖ cos θ

u · v = ‖u‖ ‖v‖ cos θ

Since u and v are nonzero their lengths are nonzero and it follows that

cos θ =
u · v
‖u‖ ‖v‖ .

Example 4-11

Find the angle between each pair of vectors.

1. u = (−1, 2, 1) , v = (2, 1, 1)
Solution:

u · v = (−1, 2, 1) · (2, 1, 1) = (−1)2 + 2(1) + 1(1) = 1

‖u‖ =
√

(−1)2 + 22 + 12 =
√

6

‖v‖ =
√

22 + 12 + 12 =
√

6

Therefore:
cos θ =

u · v
‖u‖ ‖v‖ =

1√
6 ·
√

6
=

1

6

θ = cos−1(1/6) ≈ 80.4◦ = 1.40 (radians) .

2. u = (2, 1,−1) , v = (1,−1, 1)
Solution:

u · v = (2, 1,−1) · (1,−1, 1) = 2(1) + 1(−1) + (−1)(1) = 0

Therefore:
cos θ =

u · v
‖u‖ ‖v‖ =

0

‖u‖ ‖v‖ = 0

Since cos θ = 0, we have θ = cos−1(0) =
π

2
.

Definition: Two vectors, u and v in Rn are orthogonal if u · v = 0 .

Orthogonality can therefore happen if the angle θ between the vectors is π/2 (as in the last example)
or either u or v is a zero vector.

Example 4-12

The elementary vectors ei are all mutually orthogonal. For example, in R3

e1 · e2 = i · j = (1, 0, 0) · (0, 1, 0) = (1)(0) + (0)(1) + (0)(0) = 0 .

The sign of the dot product provides useful information. Since the lengths ‖u‖ and ‖v‖ are both
positive for nonzero vectors, the sign of cos θ will be determined by that of the numerator u · v in our
formula and we have the following result.
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Theorem 4-9: Let u and v be nonzero vectors in R2 or R3 and let θ be the angle between them.
Then θ satisfies

1. 0 ≤ θ < π/2 if u · v > 0 (θ is 0 or acute) .

2. θ = π/2 if u · v = 0 (θ is a right angle) .

3. π/2 < θ ≤ π if u · v < 0 (θ is obtuse or π) .

To distinguish the two exceptional cases of θ = 0 (parallel vectors) or θ = π (antiparallel vectors) one
needs to evaluate the formula for cos θ to see if it actually is +1 or −1 respectively.

Example 4-13

Use the dot product to determine the range of the angle formed by the given vectors.

1. u = (3, 2,−2) , v = (2, 1, 2)

Solution:
u · v = (3)(2) + (2)(1) + (−2)(2) = 4 > 0 =⇒ 0 ≤ θ < π

2
.

2. u = (2, 1,−1) , v = (1,−1, 1)

Solution:
u · v = (2)(1) + (1)(−1) + (−1)(1) = 0 =⇒ θ =

π

2
(right angle).

3. u =

[
4
−3

]
, v =

[
1
2

]
Solution:

u · v = uTv =
[
4 −3

] [1
2

]
= (4)(1) + (−3)(2) = −2 < 0 =⇒ π

2
< θ ≤ π.

Angles in Rn

In higher dimensions (n > 3) we cannot resort to geometry to evaluate angles. However we can define
the angle θ between two nonzero vectors in Rn to be that value 0 ≤ θ ≤ π satisfying

cos θ =
u · v
‖u‖ ‖v‖ .

Since cosine ranges between −1 and 1 that this angle is well-defined is not obvious. That the definition
works follows from the Cauchy-Schwarz inequality:

Theorem 4-10: If u and v are vectors in Rn then

|u · v| ≤ ‖u‖ ‖v‖ .

For nonzero vectors we can divide both sides by the positive quantity ‖u‖ ‖v‖ to get∣∣∣∣ u · v
‖u‖ ‖v‖

∣∣∣∣ ≤ 1 ,

and our angle θ is well-defined. Furthermore, one can show that when θ = 0 the vectors are parallel
(u = av for some positive scalar a) and when θ = π the vectors are antiparallel (u = av for some
negative scalar a) as one expects.
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4.2.3 Projection Theorem

We have seen that an arbitrary vector in Rn can be written

u = (u1, u2, . . . , un) = u1e1 + u2e2 + unen .

Here u1 is the first component and u1e1 is the vector component directed along the first axis. If we
take the dot product of both sides with e1 we get

u · e1 = (u1e1 + u2e2 + · · ·+ unen) · e1

= (u1e1) · e1 + (u2e2) · e1 + · · ·+ (unen) · e1

= u1(e1 · e1) + u2(e1 · e2) + · · ·+ un(e1 · en)

= u1 ‖e1‖2 + u2(0) + · · ·+ un(0)

= u1(1) + 0 + · · ·+ 0

= u1

and in general u · ei = ui . In other words the dot product can be used to find the ith component of
the vector and it follows that the vector component along that direction is just

uiei = (u · ei)ei .
Moreover our above calculation (in the i = 1 case) shows that

u = u1 + u2

where
u1 = u1e1 = (u · e1)e1

is directed along the direction e1 and

u2 = u2e2 + · · ·+ unen = u− u1e1 = u− (u · e1)e1

is orthogonal to it, u2 · e1 = 0 .

We can generalize this decomposition to arbitrary directions, not simply coordinate axis directions. We
often want to decompose one vector into a sum of two other vectors such that

u = u1 + u2

where u1 is in the same direction as a (ie. u1 is a scalar multiple of a) and u2 is orthogonal to a.

u1

u

u2

a
O

If we define e to be the unit vector along the direction a, so e = 1
‖a‖a, then our previous discussion

suggests that the vector component of u along the direction of a should be

u1 = (u · e)e =

(
u · 1

‖a‖a
)

1

‖a‖a =
u · a
‖a‖2

a .

This is correct and the result is summarized in the following projection theorem.
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Theorem 4-11: Let u and a be vectors in Rn with a 6= 0. Then u has a unique decomposition into a
vector projection along the direction of a and one perpendicular to it:

u = u1 + u2 ,

where the vector u1, denoted by projau, is given by

u1 = projau =
u · a
‖a‖2

a

and is called the vector component of u along a or the orthogonal projection of u on a and

u2 = u− u · a
‖a‖2

a

is the component of u orthogonal to a.

Proof: Let u, a 6= 0 be vectors in Rn and suppose u = u1 + u2 where u1 = ca is directed along a
and u2 is orthogonal to it. Then

u · a = (u1 + u2) · a
= u1 · a+ u2 · a
= ca · a+ 0

= c ‖a‖2

Since ‖a‖ 6= 0, c =
u · a
‖a‖2

and u1 = projau . Then u2 = u − u1 = u − projau. Furthermore u2 is

orthogonal to a since

u2 · a = (u− projau) · a

=

(
u− u · a

‖a‖2
a

)
· a

= u · a− u · a
‖a‖2

(a · a)

= u · a− u · a
‖a‖2

‖a‖2

= u · a− u · a
= 0

Thus any such decomposition is unique. Since clearly u1 = projau and u2 = u − projau exist as
vectors the decomposition exists.

Example 4-14

Let u = (2,−1, 3) , a = (4,−1, 2). Find the vector component (u1) of u along a and the vector
component (u2) of u orthogonal to a. Solution:

u · a = (2)(4) + (−1)(1) + (3)(2) = 15

‖a‖2 = 42 + (−1)2 + 22 = 21
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Therefore:

u1 = projau =
u · a
‖a‖2

a =
15

21
(4,−1, 2) =

5

7
(4,−1, 2)

u2 = u− projau = (2,−1, 3)− 5

7
(4,−1, 2)

=

(
2− 20

7
,−1 +

5

7
, 3− 10

7

)
=

(
−6

7
,−2

7
,

11

7

)

Example 4-15

Find the projection of u = (2, 0, 1) on a = (1, 2, 3) .
Solution:

u · a = 2(1) + (0)(2) + 1(3) = 5

‖a‖2 = 12 + 22 + 32 = 14

Therefore
projau =

u · a
‖a‖2

a =
5

14
(1, 2, 3) .

The length of the projection of u along a can be written in terms of the angle between them.

u1

u

aθ

O

Theorem 4-12: If u and a 6= 0 are vectors in Rn then the length of the projection of u on a satisfies:

‖projau‖ = ‖u‖ | cos θ| ,

where θ is the angle between u and a .

Proof:
Noting that

u · a
‖a‖2

is a scalar that can be pulled out of ‖·‖, we have

‖projau‖ =

∥∥∥∥∥u · a‖a‖2a
∥∥∥∥∥ =

∣∣∣∣u · a||a||2
∣∣∣∣ ||a|| = |u · a|‖a‖2

‖a‖ =
|u · a|
‖a‖ =

‖u‖ ‖a‖ | cos θ|
‖a‖ = ‖u‖ | cos θ| .
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4.3 Cross Product

It is possible in three dimensions (R3) to define a useful multiplication between two vectors that
produces a vector.3

Definition: Let u = (u1, u2, u3) and v = (v1, v2, v3) be vectors in R3. The cross product of u with
v is a vector in R3 given by:

u× v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1) .

The cross product formula is easily remembered if we formally allow unit vectors into a 3×3 determinant

u× v =

∣∣∣∣∣∣
i j k
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
i u1 v1

j u2 v2

k u3 v3

∣∣∣∣∣∣ ,
and cofactor expand along the first row or column respectively. For example, expanding along the first
row of the first determinant,

u× v =

∣∣∣∣∣∣
i j k
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣ = i

∣∣∣∣u2 u3

v2 v3

∣∣∣∣− j ∣∣∣∣u1 u3

v1 v3

∣∣∣∣+ k

∣∣∣∣u1 u2

v1 v2

∣∣∣∣
= i(u2v3 − u3v2)− j(u1v3 − u3v1) + k(u1v2 − u2v1)

= (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1) .

Example 4-16

Find the cross product of the given vectors.

1. u = (−1, 2, 1) , v = (1, 1, 0)

Solution:

u× v =

∣∣∣∣∣∣
i j k
−1 2 1

1 1 0

∣∣∣∣∣∣ ← Cofactor expansion along the first row.

= i

∣∣∣∣2 1
1 0

∣∣∣∣− j ∣∣∣∣−1 1
1 0

∣∣∣∣+ k

∣∣∣∣−1 2
1 1

∣∣∣∣
= i(0− 1)− j(0− 1) + k(−1− 2)

= −i+ j − 3k

= (−1, 1,−3)

2. u =

 3
−4

1

 , v =

−1
1
1



3Unlike the dot product which is defined for all Rn a cross product with the properties to be outlined later, cannot
be defined in most dimensions. It is possible to define a cross product in R7. Later we will introduce complex numbers.
These can be generalized to quaternions and octonions with four and eight real components respectively. The vector
product in R7 can be related to the vector part of octonion multiplication just as the R3 cross product is related to the
vector part of quaternion multiplication.
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Solution:

u× v =

∣∣∣∣∣∣
i 3 −1
j −4 1
k 1 1

∣∣∣∣∣∣ ← Cofactor expansion along the first column.

= i

∣∣∣∣−4 1
1 1

∣∣∣∣− j ∣∣∣∣3 −1
1 1

∣∣∣∣+ k

∣∣∣∣ 3 −1
−4 1

∣∣∣∣
= i(−4− 1)− j(3 + 1) + k(3− 4)

= −5i− 4j − k
= (−5,−4,−1)

Example 4-17

Given u = (2,−1, 1) and v = (3, 2, 1), evaluate the following, if possible.

1. u× (u · v)

Solution:
The dot product u · v is a scalar but the cross product acts on two vectors so u× (u · v) is
not defined.

2. u · (u× v)

Solution:

u× v =

∣∣∣∣∣∣
i j k
2 −1 1
3 2 1

∣∣∣∣∣∣
= i

∣∣∣∣−1 1
2 1

∣∣∣∣− j ∣∣∣∣2 1
3 1

∣∣∣∣+ k

∣∣∣∣2 −1
3 2

∣∣∣∣
= −3i+ j + 7k

= (−3, 1, 7)

Therefore:
u · (u× v) = (2,−1, 1) · (−3, 1, 7) = −6− 1 + 7 = 0 .

In the last example u× v was found to be orthogonal to u. This is true in general.

Theorem 4-13: The vector u× v is orthogonal to both u and v.

Proof:

Let u = (u1, u2, u3) and v = (v1, v2, v3). Then u× v =

∣∣∣∣∣∣
i j k
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣ and
u · (u× v) = (u1, u2, u3) · (u2v3 − u3v2, u3v1 − u1v3, u1v3 − u3v1)

= u1(u2v3 − u3v2) + u2(u3v1 − u1v3) + u3(u1v2 − u2v1)

= u1u2v3 − u1u3v2 + u2u3v1 − u2u1v3 + u3u1v2 − u3u2v1

= 0

Similarly one can show that v · (u× v) = 0 .
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Example 4-18

Find a vector w that is orthogonal to both vectors.

1. u = (0, 1,−2) , v = (1,−1, 3)

Solution:

w = u× v

=

∣∣∣∣∣∣
i j k
0 1 −2
1 −1 3

∣∣∣∣∣∣
= i

∣∣∣∣ 1 −2
−1 3

∣∣∣∣− j ∣∣∣∣0 −2
1 3

∣∣∣∣+ k

∣∣∣∣0 1
1 −1

∣∣∣∣
= i− 2j − k
= (1,−2,−1)

w = (1,−2,−1) is orthogonal to both u and v.

Check:

u ·w = 0(1) + 1(−2)− 2(−1)

= 0− 2 + 2 = 0

v ·w = 1(1) + (−1)(−2) + 3(−1)

= 1 + 2− 3 = 0

2. u =

−2
5
−1

 , v =

−3
0
1


Solution:

w = u× v =

∣∣∣∣∣∣
i −2 −3
j 5 0
k −1 1

∣∣∣∣∣∣ = i(5− 0)− j(−2− 3) + k(0 + 15) = 5i+ 5j + 15k =

 5
5

15



4.3.1 Right-Hand Rule

Since u × v is orthogonal to both u and v it is directed out of the plane determined by those two
vectors and it is natural to ask in which of the two possible directions this is. One can readily verify
that the unit vectors in R3 satisfy

i× j = k j × k = i k × i = j .

Assume we choose, as has been done so far in this text, a coordinate system that is right-handed.
This means that if you straighten your right hand and point it in the x direction i and then curl your
fingers in the y direction j, your thumb will point in the z direction k. Provided such a coordinate
system is used then the direction of the cross product is similarly determined by the right-hand
rule. Directing your straightened right hand along the direction of u and curling your fingers in the
direction v, the cross product u× v points in the direction of your thumb.
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x

z

y

O
i

k

j

O

u

v

u× v

If left-handed coordinate systems are used then cross products will follow a left-hand rule, but such
coordinate systems will be avoided in this text.4

4.3.2 Properties of the Cross Product

Theorem 4-14: Let u, v, and w be vectors in R3 and let a be a scalar. The following are true:

u× v = −v × u (anticommutative law)(1)
u× (v +w) = u× v + u×w (left distributive law)(2)
(u+ v)×w = u×w + v ×w (right distributive law)(3)

a(u× v) = (au)× v = u× (av)(4)
u× 0 = 0× u = 0(5)
u× u = 0(6)
‖u× v‖ = ‖u‖ ‖v‖ sin θ =

√
‖u‖2 ‖v‖2 − (u · v)2 (cross product length)(7)

Here θ is the angle determined by u and v, 0 ≤ θ ≤ π .
Proof :
Let u = (u1, u2, u3), v = (v1, v2, v3) , and w = (w1, w2, w3) be vectors in R3 and a a scalar. Selected
proofs of the properties follow below.

(1)anticommutative law:

u× v =

∣∣∣∣∣∣
i j k
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
= (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1)

= −1(v2u3 − v3u2, v3u1 − v1u3, v1u2 − v2u1)

= −

∣∣∣∣∣∣
i j k
v1 v2 v3

u1 u2 u3

∣∣∣∣∣∣
= −v × u

(Exchanging rows in the determinant flips its sign as expected.)

4It may be wondered how the cross product, in our formulation, can represent physical quantities if its direction
depends on the choice of a right-handed or left-handed coordinate system. In fact the cross product is known as a
pseudovector or axial vector. If one tries to avoid appealing to coordinates by defining the cross product in terms of
the right-hand rule the cross product still behaves unvector-like under improper rotations such as reflections, where it
flips sign (direction) when u and v are reflected across a plane. This said, the cross product is invariant under proper
rotations and finds many useful physical applications with angular momentum and torque being among them.
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(5) u× u = 0:

u× u =

∣∣∣∣∣∣
i j k
u1 u2 u3

u1 u2 u3

∣∣∣∣∣∣
= (u2u3 − u3u2, u3u1 − u1u3, u1u2 − u2u1)

= (0, 0, 0)

= 0

(Determinant of matrix with two equal rows vanishes as expected.)

(7) cross product length:

‖u× v‖2 = ‖(u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1)‖2

= (u2v3 − u3v2)2 + (u3v1 − u1v3)2 + (u1v2 − u2v1)2

= u2
2v

2
3 − 2u2u3v2v3 + u2

3v
2
2 + u2

3v
2
1 − 2u1u3v1v3 + u2

1v
2
3

+ u2
1v

2
3 + u2

1v
2
2 − 2u1u2v1v2 + u2

2v
2
1

‖u‖2 ‖v‖2 − (u · v)2 = (u2
1 + u2

2 + u2
3)(v2

1 + v2
2 + v2

3)− (u1v1 + u2v2 + u3v3)2

=���u2
1v

2
1 + u2

1v
2
2 + u2

1v
2
3 + u2

2v
2
1 +���u2

2v
2
2 + u2

2v
2
3 + u2

3v
2
1 + u2

3v
2
2 +���u2

3v
2
3

−�
��u2

1v
2
1 −�

��u2
2v

2
2 −�

��u2
3v

2
3 − 2u1v1u2v2 − 2u1v1u3v3 − 2u2v2u3v3

= u2
2v

2
3 − 2u2u3v2v3 + u2

3v
2
2 + u2

3v
2
2 + u2

3v
2
1 − 2u1u3v1v3 + u2

1v
2
3

+ u2
1v

2
2 − 2u1u2v1v2 + u2

2v
2
1

Therefore
‖u× v‖2 = ‖u‖2 ‖v‖2 − (u · v)2 .

Furthermore,

‖u‖2 ‖v‖2 − (u · v)2 = ‖u‖2 ‖v‖2 − (‖u‖ ‖v‖ cos θ)2

= ‖u‖2 ‖v‖2 − ‖u‖2 ‖v‖2 cos2 θ

= ‖u‖2 ‖v‖2 (1− cos2 θ)

= ‖u‖2 ‖v‖2 sin2 θ

Thus √
‖u× v‖2 =

√
‖u‖2 ‖v‖2 − (u · v)2 =

√
‖u‖2 ‖v‖2 sin2 θ

‖u× v‖ =

√
‖u‖2 ‖v‖2 − (u · v)2 = ‖u‖ ‖v‖ sin θ

Note here that
√

sin2 θ = | sin θ| = sin θ since 0 ≤ θ ≤ π .

4.3.3 Area of a Parallelogram

The area of a parallelogram equals its base times its height. If one considers the parallelogram
determined by u and v, one has a convenient interpretation of the length of the cross product as the
area of the parallelogram.
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v

u
θ

‖v‖ sin θ

O

If θ is the angle between u and v the height of the parallelogram shown is ‖v‖ sin θ and we have that
parallelogram area equals its base times its height,

Area Parallelogram = ‖u‖ ‖v‖ sin θ = ‖u× v‖ ,

where the last equality follows by Theorem 4-14 .

Example 4-19

Find the area of the parallelogram determined by the vectors u = (1, 4, 4) and v = (0, 3, 2).
Solution:

u× v =

∣∣∣∣∣∣
i j k
1 4 4
0 3 2

∣∣∣∣∣∣
= (8− 12, 0− 2, 3− 0)

= (−4,−2, 3)

A = ||u× v|| =
√

(−4)2 + (−2)2 + (3)2

=
√

29

The area of the parallelogram is
√

29 square units.

4.3.4 Area of a Triangle

The triangle determined by the terminal points of u and v and the origin O is just half the parallelogram
determined by u and v.

v

u
O

Therefore the area of the triangle determined by u and v is given by

Area Triangle =
1

2
‖u× v‖ .
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Example 4-20

Find the area of the triangle determined by the points P1(2, 2, 0), P2(−1, 0, 2), and P3(0, 4, 3).
Solution:
Let p1, p2 and p3 have terminal points P1, P2 and P3 respectively. Then

−−−→
P1P2 is equivalent to

u = p2 − p1 = (−1, 0, 2)− (2, 2, 0) = (−3,−2, 2) ,

and
−−−→
P1P3 is equivalent to

v = p3 − p2 = (0, 4, 3)− (2, 2, 0) = (−2, 2, 3) .

The triangle determined by P1, P2, and P3 is symmetric to that determined by u and v at the origin.
Their cross product is

u× v =

∣∣∣∣∣∣
i j k
−3 −2 2
−2 2 3

∣∣∣∣∣∣
= (−6− 4,−4 + 9,−6− 4)

= (−10, 5,−10) .

So the area of the symmetric triangles equal

Area Triangle =
1

2
‖u× v‖

=
1

2

√
(−10)2 + 52 + (−10)2

=
1

2

√
225

=
1

2
(15)

=
15

2
square units.
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4.4 Scalar Triple Product

A scalar can be formed from three vectors as follows.5

Definition: If u, v, and w are vectors in R3, then u · (v ×w) is called the scalar triple product
of u,v and w.

Theorem 4-15: The scalar triple product satisfies

u · (v ×w) =

∣∣∣∣∣∣
u1 v1 w1

u2 v2 w2

u3 v3 w3

∣∣∣∣∣∣ .
From this determinant formula for the scalar triple product it follows that

u · (v ×w) = v · (w × u) = w · (u× v) ,

since these require two column exchanges to accomplish.

Example 4-21

Calculate the scalar triple product of u = (3,−2,−5), v = (1, 4,−4), and w = (0, 3, 2) .

Solution: Using the determinant formula evaluated along the last row gives

u · (v ×w) =

∣∣∣∣∣∣
3 1 0
−2 4 3
−5 −4 2

∣∣∣∣∣∣
= 3(+1)(8− (−12)) + (1)(−1)(−4− (−15))

= 3(20)− (1)(11)

= 60− 11

= 49

4.4.1 Volume of a Parallelepiped

The scalar triple product has a useful geometrical application. Three vectors u, v, and w in R3 that
are not coplanar will determine a parallelepiped.

u× v

u

w

v

‖w‖ cos θ
θ

O

5Technically the scalar triple product is a pseudoscalar since the presence of the cross product in its definition causes
it to change sign under improper transformations such as reflections.
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The volume will be the area of the parallelogram of its base, ‖u× v‖, times its height. Since the
vector u× v is orthogonal to the plane of the parallelogram the height is just the absolute value of the
projection of w onto u× v, namely

‖w‖ | cos θ| ,
where θ is the angle between w and u× v. The volume is therefore

(height)(base area) = ‖w‖ | cos θ| ‖u× v‖ = | ‖w‖ ‖u× v‖ cos θ|

with the result that the volume of is just the absolute value of one of the forms of the scalar triple
product of the three vectors, |w · (u× v)|. Using the form of the scalar triple product we originally
introduced gives the formula:

Volume Parallelepiped = |u · (v ×w)| .

One notes that the three formulas for the scalar triple product reflect the fact that any one of the three
sides can be considered the base of the parallelepiped.

Example 4-22

Find the volume of the parallelepiped generated by the vectors u = (3,−2,−5), v = (1, 4,−4), and
w = (0, 3, 2) .

Solution:
Using the result from Example 4-21 we have

Volume = |u · (v ×w)| = |49| = 49 (units3) .
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5.1 Point-Parallel Form of a Line

Consider a vector v 6= 0 . The terminal points of the scalar multiples of v, given by tv for t any scalar,
will be collinear, by Theorem 4-2. Since t = 0 implies 0 is one of these points, the line goes through the
origin O.

tv

v

O

An arbitrary line going through a point P with direction v can be formed by adding the vector tv to
the vector p with terminal point P .

x(t)

tv

p

P

X(t)

O

We summarize these observations with the following definition.

Definition: The equation of a line that passes through a given point P and is parallel to a given
vector v 6= 0 is given by:

x(t) = p+ tv ,

where t is a scalar parameter. Here P is the terminal point of vector p. This is called the
point-parallel form of a line.

Example 5-1

Find a point-parallel form for the line in R3 that passes through the point P (2, 1,−3) and is parallel
to the vector v = (1, 2, 2).

Solution:
Letting p = (2, 1,−3) be the vector with terminal point P we have by the previous formula.

x(t) = p+ tv = (2, 1,−3) + t(1, 2, 2) ,

where t is a scalar.

We note that while the point-parallel form of a line can be visualized in two and three dimensions, the
formula can be used to characterize lines more generally in Rn.
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5.1.1 Parametric Equations of a Line

Consider the vector equation x(t) = p + tv. In R3 we can write x = (x, y, z), p = (x0, y0, z0), and
v = (v1, v2, v3). Then:

x(t) = p+ tv

(x, y, z) = (x0, y0, z0) + t(v1, v2, v3)

⇒


x = x0 + tv1

y = y0 + tv2

z = z0 + tv3

These are called parametric equations for the line.

Parametric equations for a line in R2 are similarly

{
x = x0 + tv1

y = y0 + tv2

.

Example 5-2

Find parametric equations for the line passing through the point P (2, 1,−1) that is parallel to the
vector v = (−1, 1, 3) and determine if the point Q(0, 5, 5) is on the line.

Solution:

x(t) = p+ tv

(x, y, z) = (2, 1,−1) + t(−1, 1, 3)

(x, y, z) = (2− t, 1 + t,−1 + 3t)

Parametric equations for the line are therefore
x = 2− t
y = 1 + t

z = −1 + 3t

.

The point Q(1, 5, 5) is on the line if the overdetermined linear system

0 = 2− t
5 = 1 + t

5 = −1 + 3t

has a solution for t. The first equation implies t = 2 but while this satisfies the third equation it
fails to satisfy the second. Therefore the point Q is not on the line.
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5.2 Two-Point Form of a Line

Let P and Q be distinct points. If vectors p and q have these terminal points then the vector v = q−p
will be parallel to the line determined by the points. Inserting this into the point-parallel equation
x(t) = p+ tv gives the following.

Definition: The two-point form of a line determined by points P and Q is:

x(t) = (1− t)p+ tq ,

where P and Q are terminal points of vectors p and q and t is a scalar parameter.

One observes that x = p when t = 0 (so point P ) and x = q when t = 1 (so point Q) with this
parameterization of the line.

Example 5-3

Describe the line that passes through the points P (1,−1, 3) and Q(1, 2,−4) in both two-point form
and parametric form.

x(t) = (1− t)p+ q

x(t) = (1− t)(1,−1, 3) + t(1, 2,−4) (two-point form)

Expanding gives the parametric form:

(x, y, z) = (1− t,−1 + t, 3− 3t) + (t, 2t,−4t)

= (1,−1 + 3t, 3− 7t)

⇒


x = 1

y = −1 + 3t

z = 3− 7t

(parametric form)
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5.3 Point-Normal Form of a Line

If we consider two-dimensional space R2 a normal vector n to a line in R2 is a nonzero vector that is
perpendicular to the direction v of the line, n · v = 0. Assuming a point-parallel description of a line
x = p+ tv it follows that x− p = tv and we have

n · (x− p) = n · (tv) = t(n · v) = t(0) = 0 ,

for any point X on the line.

x− p

p

x

n

P

O

X

This suggests the following alternate description of a line in R2 in terms of a normal vector.

Definition: The point-normal form of a line in R2 passing through a given point P (x0, y0) that is
normal (perpendicular) to a given vector n = (a, b) is given by the equation

n · (x− p) = 0 ,

where X(x, y) is any point on the line. Here P and X are the terminal points of vectors p and x
respectively.

Example 5-4

Find the equation of a line passing through P (1,−1) with normal n = (2,−1) .

Solution:
Since we are given a point and normal for the line we use the point-normal form recipe with x = (x, y)
and p = (1,−1) to get:

n · (x− p) = 0

(2,−1) · (x− 1, y + 1) = 0

2(x− 1)− (y + 1) = 0 (point-normal form)

Further expansion gives the standard form:

2x− 2− y − 1 = 0

2x− y = 3 (standard form)
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If we expand the point-normal equation in terms of the vector components we can recover the standard
form of the line as follows.

n · (x− p) = 0

(a, b) · [(x, y)− (x0, y0)] = 0

(a, b) · (x− x0, y − y0) = 0

a(x− x0) + b(y − y0) = 0

ax− ax0 + by − by0 = 0

ax+ by = ax0 + by0︸ ︷︷ ︸
=c

Consideration of the last line shows that the coefficients of x and y in the standard form of a line in R2

have the geometrical interpretation as the components (a, b) of a normal n to the line. If one desires a
vector v that is parallel to the line one observes that

(a, b) · (b,−a) = ab− ba = 0,

which shows v = (b,−a) will be a nonzero vector perpendicular to n which in two dimensions implies
it is parallel to the line. Finally a point P on the line can be found by choosing an arbitrary value of x
and solving for y (or vice versa if coefficient b = 0).

Example 5-5

Find a point-parallel form for the line in R2 given by the equation 2x+ 3y = 1 .

Solution:
We are given the standard form (ax+ by = c) of 2x+ 3y = 1 . We need to find a point on the line
and a vector parallel to it.

When x = 0:

2x+ 3y = 1

2(0) + 3y = 1

y =
1

3
.

Therefore the point P
(
0, 1

3

)
is on the line.

The vector n = (a, b) = (2, 3) is normal to the line. Then v = (b,−a) = (3,−2) is therefore
orthogonal to it. Using the point-parallel form recipe gives

x(t) = p+ tv

x(t) =

(
0,

1

3

)
+ t(3,−2) (point-parallel form)
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5.4 Point-Normal Form of a Plane

In three dimensions a plane may be determined by a point P through which it passes and a normal
vector n which is perpendicular to the plane. We want to find the equation of the plane passing through
a given point P (x0, y0, z0) and perpendicular to a given vector n = (a, b, c) .

x
p

x− p

n

O

P
X−−→

PX

Let X(x, y, z) be any other point on the plane. P and X determine a line in the plane. The directed
line segment

−−→
PX is equivalent to the vector x− p which must therefore be orthogonal to n :

n · (x− p) = 0 ,

where as usual X and P are the terminal points of x and p respectively. Any point X on the plane has
to satisfy this equation. With n = (a, b, c) and x− p = (x− x0, y − y0, z − z0), then the equation of
the plane becomes:

a(x− x0) + b(y − y0) + c(z − z0) = 0 .

These equations are the point-normal form for the plane.

We can rewrite the point-normal form as follows:

n · (x− p) = 0

n · x− n · p = 0

n · x = n · p

With n = (a, b, c) and setting the constant d = n · p = ax0 + by0 + cz0 this becomes

ax+ by + cz = d .

This is called the standard form of the equation of the plane. In other words a linear equation in
three dimensions written in this form will represent a plane with normal n = (a, b, c) provided one of
a, b, or c is nonzero. This is analogous to the normal to a line appearing in the standard form of a
linear equation in R2 . Note that the standard form of a plane is not unique since one can multiply
the equation by a nonzero scalar to get an equivalent equation. Geometrically this is just scaling the
normal vector by that amount to produce a new normal to the plane.



138 5.4 Point-Normal Form of a Plane

Example 5-6

Find a point-normal and standard form of the equation of the plane that passes through the given
point P which is perpendicular to the given vector n .

1. P (1, 3,−2) ,n = (−2, 1,−1)

Solution:
Let X(x, y, z) be any other point on the plane, then

−−→
PX in the plane is equivalent to the

vector x− p = (x− 1, y − 3, z + 2) and a point normal form for the plane is

n · (x− p) = 0

(−2, 1,−1) · (x− 1, y − 3, z + 2) = 0

−2(x− 1) + 1(y − 3) + (−1)(z + 2) = 0 (point-normal form)

Expanding gives the standard form:

−2x+ 2 + y − 3− z − 2 = 0

−2x+ y − z = 3 (standard form)

2. P (1, 1, 4) ,n = (1, 9, 8)

Solution:
Let X(x, y, z) be any other point on the plane, then

−−→
PX in the plane is equivalent to the

vector x− p = (x− 1, y − 1, z − 4) and the point-normal form of the plane is

n · (x− p) = 0

(1, 9, 8) · (x− 1, y − 1, z − 4) = 0

1(x− 1) + 9(y − 1) + 8(z − 4) = 0 (point-normal form)

Expanding gives:

x− 1 + 9y − 9 + 8z − 32 = 0

x+ 9y + 8z = 42 (standard form)

Example 5-7

Find the point of intersection of the line x(t) = (2, 1, 1) + t(−1, 0, 4) and the plane x− 3y − z = 1.

Solution:
The point on the line will be determined by the value of t in the point-parallel form of the line. The
parametric form of the line is given by:

x(t) = (2, 1, 1) + t(−1, 0, 4)

x(t) = (2− t, 1, 1 + 4t)

⇒


x = 2− t
y = 1

z = 1 + 4t

To also sit on the plane (x, y, z) must additionally satisfy the planar equation. Inserting the
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parametric form into that equation gives:

x− 3y − z = 1

(2− t)− 3(1)− (1 + 4t) = 1

2− t− 3− 1− 4t = 1

−5t = 3

t = −3

5

The point of intersection has coordinates:

x = 2−
(
−3

5

)
=

13

5

y = 1

z = 1 + 4

(
−3

5

)
= −7

5

Therefore the point is P
(

13
5 , 1,− 7

5

)
.

The standard form of a plane in R3 is just a linear equation. Thus a linear system of m equations in
three unknowns has the geometrical interpretation of the intersection of these m planes. We require
planar intersection because a solution to the linear system must satisfy all its equations.

Example 5-8

The equations given below represent planes in R3. Describe geometrically the given solution set of
these equations

1.
x+ y + z = −4

x+ 2y = 1

2y + 3z = −2

,

xy
z

 =

−
21
5
13
5

− 12
5


Solution:

The solution represents the single intersection point P
(
− 21

5 ,
13
5 ,− 12

5

)
of the 3 planes.

2.
x− y + z = 0

y − 2z = 1

2x− y = 1

,

xy
z

 =

 1 + t
1 + 2t
t


Solution:

Since xy
z

 =

1
1
0

+ t

1
2
1

 ,
this is a line that passes through P (1, 1, 0) and is parallel to the vector v = (1, 2, 1) .
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3.
x+ 4y − 5z = 0

2x− y + 8z = 9
,

xy
z

 =

 4− 3t
−1 + 2t

t


Solution:

Since xy
z

 =

 4
−1

0

+ t

−3
2
1

 ,
this is a line that passes through P (4,−1, 0) and is parallel to the vector v = (−3, 2, 1) .
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5.5 Plane through Three Points

Three noncollinear points in R3 will determine a plane. To find the equation of the plane that passes
through the three noncollinear points P , Q, R we consider the directed line segments

−−→
PQ and

−→
PR.

These lie in the plane and are equivalent to the vectors q − p and r − p respectively. Recall the cross
product of two vectors is orthogonal to both vectors. Therefore a normal vector n to the plane is given
by

n = (q − p)× (r − p) ,

which can then be inserted into the point-normal equation,

n · (x− p) = 0 ,

to find an equation for the plane.

n

r − p

p

q − p

q
r

P

Q

R

O

−→
PR

−→PQ

Example 5-9

Find a point-normal form and standard form for the plane passing through the points P (−1, 1, 3),
Q(0, 3, 1), and R(2, 1,−1) .

Solution:
First find a normal n.

−−→
PQ and

−→
PR are equivalent to q − p and r − p where

q − p = (0, 3, 1)− (−1, 1, 3) = (1, 2,−2)

r − p = (2, 1,−1)− (−1, 1, 3) = (3, 0,−4)

Taking the cross product gives

n = (q − p)× (r − p) =

∣∣∣∣∣∣
i j k
1 2 −2
3 0 −4

∣∣∣∣∣∣
= (−8 + 0,−6 + 4, 0− 6)

= (−8,−2,−6)

Substitute into the point-normal equation:

n · (x− p) = 0

(−8,−2,−6) · (x+ 1, y − 1, z − 3) = 0

−8(x+ 1) + (−2)(y − 1) + (−6)(z − 3) = 0 (point-normal form)
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Expanding gives the standard form:

−8x− 8− 2y + 2− 6z + 18 = 0

−8x− 2y − 6z + 12 = 0

−8x− 2y − 6z = −12

4x+ y + 3z = 6 (standard form)

Here we simplified the equation by dividing both sides by -2 .
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5.6 Point-Parallel Form of a Plane

If P (x0, y0, z0) is a point and u = (u1, u2, u3) and v = (v1, v2, v3) are nonzero, noncollinear vectors
then the lines x(s) = p+ su and x(t) = p+ tv with parameters s and t will intersect at P and will
determine a plane.

Definition: The point-parallel form of a plane in R3 through point P that is parallel to noncollinear
vectors u 6= 0 and v 6= 0 is given by

x(s, t) = p+ su+ tv ,

where s and t are scalar parameters and P is the terminal point of vector p.

n x(s, t)

u
su

tv
v

p

su + tvO

P X(s, t)

That the lines x(s) = p+ su and x(t) = p+ tv lie in the surface generated by x(s, t) = p+ su+ tv
is clear by setting t = 0 or s = 0 respectively in the latter equation. To see that the points X given
by x(s, t) really do lie on a plane, note that a normal to the plane, orthogonal to both u and v, is
n = u× v and we have

n · (x− p) = n · (p+ su+ tv − p)

= n · (su+ tv)

= n · (su) + n · (tv)

= sn · u+ tn · v
= s(0) + t(0)

= 0

as required.

5.6.1 Parametric Equations of a Plane

Writing out the vector equation x = p+su+tv in terms of components with x = (x, y, z), p = (x0, y0, z0),
u = (u1, u2, u3), and v = (v1, v2, v3) we get

x = p+ su+ tv

(x, y, z) = (x0, y0, z0) + s(u1, u2, u3) + t(v1, v2, v3)

(x, y, z) = (x0 + su1 + tv1, y0 + su2 + tv2, z0 + su3 + tv3)
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Therefore 
x = x0 + su1 + tv1

y = y0 + su2 + tv2

z = z0 + su3 + tv3

.

These are called parametric equations for the plane.

Example 5-10

Find the point-parallel form and parametric equations of the plane passing through the point
P (−2, 1, 3) and parallel to the vectors u = (1, 1,−1) and v = (−1, 2, 0).

Solution:

x = p+ su+ tv

(x, y, z) = (−2, 1, 3) + s(1, 1,−1) + t(−1, 2, 0) (point-parallel form)

(x, y, z) = (−2 + s− t, 1 + s+ 2t, 3− s)

⇒


x = −2 + s− t
y = 1 + s+ 2t

z = 3− s
(parametric equations)

Example 5-11

Given the plane in standard form
2x+ 2y − 4z = 10 ,

find a point-parallel form and parametric equations for the plane.

Solution:
To find the point-parallel form we solve the linear system containing the single equation

2x+ 2y − 4z = 10 .

The corresponding augmented matrix is reduced to RREF:[
2 2 −4 10

]
⇒ R1 → 1

2R1

[
1 1 −2 5

]
⇔ x+ y − 2z = 5 .

Assign the free (independent) variables y and z to parameters so that y = s and z = t . Solving
for the leading (dependent) variable x gives

• x+ y − 2z = 5 =⇒ x+ s− 2t = 5 =⇒ x = 5− s+ 2t .

Writing the solution in terms of vectors gives

x(s, t) =

xy
z

 =

5− s+ 2t
s
t

 =

5
0
0


︸︷︷︸
p

+s

−1
1
0


︸ ︷︷ ︸

u

+t

2
0
1


︸︷︷︸
v

. (point-parallel form)

One sees that the particular solution here is geometrically a point p on the plane, while the
homogeneous solution, su+ tv, gives the offset vector from that point.

The first vector equation implies 
x = 5− s+ 2t

y = s

z = t

. (parametric equations)
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5.7 Distance to Lines and Planes

A common geometrical problem is to find the distance d between a line (in R2 or R3) or plane (in R3)
and a point P off the line or plane. The problem may be solved by finding the closest point Q on the
line or plane to P . The distance is then ‖q − p‖. Summary of our general approach is as follows:

1. Find a point-parallel equation for a line on which Q lies.

2. Substitute q(t) into a geometrical constraint equation to get an equation involving only parameter t.

3. Solve this for t to find q (and hence Q).

4. Calculate the distance d = d(p, q) = ‖q − p‖.

5.7.1 Point-Parallel Line

As an example, suppose one wishes to find the closest point and distance from P to a line, in either R2

or R3, where the line is described by the point-parallel form x(t) = p0 + tv. Then Q clearly lies on this
line and thus satisfies

q(t) = p0 + tv

for some particular value of the parameter t to be determined. The directed line segment
−−→
PQ must be

perpendicular to the line and it follows that the constraint required to find t is just

(q − p) · v = 0 ,

into which we substitute q(t) from above and solve.

q

p

q − p

−→
PQ

O

P

P0

x(
t)
=
p0

+ tv

Q

Example 5-12

Find the distance between the point P (2, 5) and the line x(t) = (6, 3) + t(4, 3). Also find the closest
point Q on the line.

Solution:
The point Q, the tip of vector q, must lie on the line so we have

q = (6, 3) + t(4, 3)
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for some particular value of t which we must find. Now
−−→
PQ, which is equivalent to q − p where

q − p = (6, 3) + t(4, 3)− (2, 5) = (6 + 4t− 2, 3 + 3t− 5) = (4 + 4t,−2 + 3t) ,

must be orthogonal to the direction of the line, v = (4, 3). This gives the necessary constraint to
find t:

(q − p) · v = 0

(4 + 4t,−2 + 3t) · (4, 3) = 0

(4 + 4t)(4) + (−2 + 3t)(3) = 0

16 + 16t− 6 + 9t = 0

25t = −10

t = −10

25
= −2

5

This implies

q = (6, 3) +

(
−2

5

)
(4, 3)

= (6, 3)−
(

8

5
,

6

5

)
=

(
6− 8

5
, 3− 6

5

)
=

(
30− 8

5
,

15− 6

5

)
=

(
22

5
,

9

5

)
,

so the closest point on the line is Q = (22/5, 9/5) . The distance from the line to P is therefore the
length of

q − p =

(
22

5
,

9

5

)
− (2, 5) =

(
22

5
− 10

5
,

9

5
− 25

5

)
=

(
12

5
,−16

5

)
=

1

5
(12,−16)

which is

d = ‖q − p‖ =

∥∥∥∥1

5
(12,−16)

∥∥∥∥ =
1

5
‖(12,−16)‖ =

1

5

√
(12)2 + (−16)2 =

1

5

√
400 =

20

5
.

5.7.2 Distance Given Normal

If an equation of a line in R2 or a plane in R3 is given in the standard form

ax+ by = c or ax+ by + c = d

respectively, then the normal direction to the line n = (a, b) or to the plane n = (a, b, c) is known. A
point-normal equation similarly gives the normal n. If we want the point Q that lies on the line or
plane that is closest to the point P off of it, then Q must sit on the line through P that in the direction



Lines and Planes 147

of the normal, namely the line x(t) = p+ tn . So for some particular value of t we have

q(t) = p+ tn .

Setting q = (x, y, z) one has parametric equations for x(t), y(t), and z(t) which can then be inserted
into the original line or plane equation to find t, since Q is constrained to lie there.

q

pn

O

P

Q
ax

+ by
=
cx(

t)
=
p +

tn

Example 5-13

Find the distance between the point P (5, 1, 15) and the plane 2x − 3y + 6z = −1 . Also find the
closest point Q in the plane.

Solution:
The plane equation gives the normal to the plane to be

n = (a, b, c) = (2,−3, 6) .

The point Q, tip of the vector q = (x, y, z), lies on the line through P with direction n and so

q = p+ tnxy
z

 =

 5
1

15

+ t

 2
−3

6


for some value of the parameter t to be determined. The parametric equations are

x = 5 + 2t

y = 1− 3t

z = 15 + 6t

.

The constraint to find t comes from the fact that q must lie on the plane and hence satisfy the plane
equation. Inserting the parametric equations into the latter gives:

2x− 3y + 6z = −1

2(5 + 2t)− 3(1− 3t) + 6(15 + 6t) = −1

10 + 4t− 3 + 9t+ 90 + 36t = −1

49t = −98

t = −2
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The closest point in the plane is therefore given by

q =

 5
1

15

+ (−2)

 2
−3

6

 =

 5− 4
1 + 6

15− 12

 =

1
7
3

 ,
so Q(1, 7, 3), and the distance between P and the plane is the length of

q − p =

1
7
3

−
 5

1
15

 =

 −4
6

−12


which is

d = ‖q − p‖ = ‖(−4, 6,−12)‖ =
√

(−4)2 + 62 + (−12)2 =
√

196 = 14 .

The approach can be used to solve, once and for all for the distance between P and the line or plane
and one has the following theorems.

Theorem 5-1: In R2 the distance d between the point P (x0, y0) and the line ax+ by = c is given by

d =
|ax0 + by0 − c|√

a2 + b2
.

Theorem 5-2: In R3 the distance d between the point P (x0, y0, z0) and the plane ax+ by + cz = d is
given by

d =
|ax0 + by0 + cz0 − d|√

a2 + b2 + c2
.

Example 5-14

Find the distance between the point P (5, 1, 15) and the plane 2x− 3y + 6z = −1 using the distance
formula.

Solution:

d =
|ax0 + by0 + cz0 − d|√

a2 + b2 + c2

=
|2(5)− 3(1) + 6(15)− (−1)|√

(2)2 + (−3)2 + 62

=
|98|√

49

=
98

7
= 14

This is the same as we found in Example 5-13 .

In three dimensions two planes will intersect (distance between them d = 0) unless they are parallel. If
they are parallel we can find the distance between them by finding a point on one of the planes and
then calculating the distance from that point to the other plane.
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Example 5-15

Find the distance between the two planes x+ 2y − 2z = 3 and 2x+ 4y − 4z = 7.

Solution:
The normal of x+ 2y − 2z = 3 is n1 = (1, 2,−2) .
The normal of 2x+ 4y − 4z = 7 is n2 = (2, 4,−4) = 2(1, 2,−2) = 2n1 .
So n1 is parallel to n2 and therefore the planes are parallel. To find a point in the first plane set
y = z = 0 to get x = 3 so P (3, 0, 0) lies on the first plane. Now find the distance between P (3, 0, 0)
and the plane 2x+ 4y − 4z = 7 using the distance formula:

d =
|ax0 + by0 + cz0 − d|√

a2 + b2 + c2

=
|2(3) + 0 + 0− 7|√

22 + 42 + (−4)2

=
| − 1|√

36

=
1

6
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6.1 A Survey of Linear Transformations

The student will have encountered the idea of real-valued functions of real variables, such as f(x) =
sin(x) . Similarly one can define real-valued functions of vectors in Rn. The length of a vector,

f(u) = ‖u‖ ,

would be such a function. In this chapter we will go one step further and look at functions of vectors
whose result is a vector, that is mappings from Rn → Rm. Such a function can be thought of
transforming a vector into a new vector.

Definition: A transformation from Rn to Rm, written T : Rn → Rm, is a mapping that assigns a
unique vector v = T (u) in Rm to each vector u in Rn.

The important class of transformations under consideration here will be linear transformations. We
will see that these are ultimately representable in terms of matrices and their action on vectors with
matrix multiplication.

Definition: A linear transformation is a transformation L(u) from Rn to Rm satisfying

L(u+ v) = L(u) + L(v)(1)
L(cu) = cL(u)(2)

for any vectors u and v in Rn and scalar c .

Example 6-1

The identity transformation, which will be denoted by 1 , takes a vector u in Rn to itself and is
thus defined by 1(u) = u . It is a linear transformation from Rn to Rn since

1(u+ v) = u+ v = 1(u) + 1(v)

1(cu) = cu = c1(u) .

To more specifically identify the identity transformation from Rn to Rn we may write 1n .

Example 6-2

The zero transformation, which will be denoted by O, takes any vector u in Rn to the zero vector
in Rm, and is thus defined by O(u) = 0 . It is a linear transformation since

O(u+ v) = 0 = 0 + 0 = O(u) + O(v)

O(cu) = 0 = c0 = cO(u) .

To be more specific we may write Omn to identify the zero transformation from Rn to Rm .

A class of non-trivial linear transformations is as follows.
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Example 6-3

Suppose k is a scalar constant. Define the scalar transformation Ck from Rn to Rn by

Ck(u) = ku .

Then Ck is a linear transformation since

Ck(u+ v) = k(u+ v) = ku+ kv = Ck(u) + Ck(v)

Ck(cu) = k(cu) = c(ku) = cCk(u)

For real-valued k geometrically the effect of the transformation is as follows:

Case 1 < k : Ck(u) is a dilation. The vector retains its direction but is lengthened by a factor
of k.

u Ck(u)

O O
(k = 3/2)

Ck

R2 R2

Case k = 1 : C1(u) = 1u = u and we recover the identity transformation 1n.

u
1(u)

O O

R2 R2

C1 = 1

Case 0 < k < 1 : Ck(u) is a contraction. The vector retains its direction but is shortened by a
factor of k.

u
Ck(u)

O

R2

O

R2

(k = 1/2)

Ck
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Case k = 0 : C0(u) = 0u = 0 and we recover the zero transformation Onn.

Case k = −1 : C−1(u) = −u is inversion through the origin O. The vector retains its length
but points in the opposite direction. We will denote inversion by D so D(u) = −u .

u

D(u)

O

R2

O

R2

C−1 = D

Inversion through the original is sometimes called reflection through the origin though we
will avoid that terminology.

Case −1 < k < 0 : A combination of inversion through the origin and contraction by |k|.

Case k < −1 : A combination of inversion through the origin and dilation by |k|.

One observes that the previous linear transformations written in terms of scalar multiplication are
independent of choice of coordinate system (except for the choice of origin O upon which they do
depend). Secondly one often considers the transformation as acting on the terminal points of the
vectors themselves.

Example 6-4

Let n be a unit vector in Rn. The projection onto n, denoted by Pn, and given by

Pn(u) = projnu =
u · n
‖n‖2

n = (u · n)n

is a linear transformation from Rn to Rn. It is linear due to the linearity of the dot product:

Pn(u+ v) = projn(u+ v) = [(u+ v) · n]n = (u · n+ v · n)n

= (u · n)n+ (v · n)n = projnu+ projnv

= Pn(u) + Pn(v)

Pn(cu) = projn(cu) = [(cu) · n]n = c(u · n)n = cprojnu

= cPn(u)

6.1.1 Sum and Scalar Product of Transformations

Just as we define the sum of two real-valued functions f + g to be the result when we add the action of
each function separately, i.e. (f + g)(x) = f(x) + g(x) we can define the sum of two transformations
S(u) and T (u) by

(S + T )(u) = S(u) + T (u) .
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Similarly a scalar multiple c times a transformation T can be defined by multiplying the scalar times
the result of acting T on the vector,

(cT )(u) = cT (u) .

Theorem 6-1: Let K and L be linear transformations from Rn to Rm and c a scalar then the
transformations K + L and cL are themselves linear.

More generally one can prove inductively that an arbitrary linear combination of a finite number of
such linear transformations will be linear.

Example 6-5

Suppose S = {n1, n2, . . . , nk} is a set of unit vectors in Rn that are mutually orthogonal. The
orthogonal projection onto the span of these vectors will be denoted by Pn1,n2,...,nk and is given
by

Pn1,n2,...,nk(u) = projn1
u+ projn2

u+ · · ·+ projnku .

It is a linear transformation since it is a sum of linear transformations,

Pn1,n2,...,nk = Pn1
+ Pn2

+ · · ·+ Pnk .

As a specific example, Pi,j in R3 is the projection of u onto the x-y plane.

u

Pi,j(u)
x

z

y

Example 6-6

We have seen how a vector u can be broken into a vector component parallel to a given direction n
and a component orthogonal to it by

u = u1 + u2 = projnu+ (u− projnu)

If we transform the vector by multiplying only the parallel component u1 by a constant scalar k to
get ku1 + u2 we have the transformation from Rn to Rn given by

Sn,k(u) = k projnu+ (u− projnu) = u+ (k − 1) projnu

The transformation is linear since it can be written as a linear combination of linear transformations:

Sn,k = 1 + (k − 1)Pn .

Important special cases are as follows.
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Case k > 1 : The component along n expands by a factor of k and we call Sn,k an expansion.

n

O

Sn,k(u)

(k = 3/2)

u

Case k = 1 : We see Sn,1 = 1 , the identity transformation.

Case 0 < k < 1 : The component along n is compressed by the factor k and we call Sn,k a
compression.

n
u

O

Sn,k(u)

(k = 1/2)

If we imagine an image made up of points considered to be terminal points of their respective
vectors from the origin then for k positive Sn,k will stretch (k > 1) or squash (0 < k < 1) the
entire image along the direction of n measured from the line (in R2) or plane (in R3) going
through the origin orthogonal to n .

Case k = 0 : We see Sn,0 = 1− Pn which returns the component of u orthogonal to n, i.e. u2 .

Case k = −1 : The linear transformation Sn,−1 which will be denoted Qn, is given by

Qn(u) = −projnu+ (u− projnu) = u− 2 projnu

and is called a reflection. In R2 it represents a reflection about the line through the
origin with normal n. In R3 it is a reflection across the plane through the origin with
normal n. It is called a reflection because a set of points (tips of their respective vectors) will
be transformed to their mirror images across the line or plane.

Qn(u)

n
u

O

Note that expansion/compression should be compared with dilation/contraction seen earlier and
reflection should be compared with inversion about the origin. In dilation/contraction and inversion
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the entire vector is modified, not simply a projection of it.

Example 6-7

As an important example we consider rotation in the plane R2 and more generally in R3. In the
plane a counterclockwise rotation is determined by an angle θ. Such a transformation will be written
Rθ(u).

u
θ

O

R2

Rθ(u)

In three dimensions a rotation is determined by a direction, given by unit vector n, which determines
the axis of rotation through the origin, as well as the angle of rotation, θ about that axis. The
right-hand rule with thumb pointing in the direction of n is used to determine the direction of
rotation. The projection of u in the direction of n is unaffected by the rotation. The orthogonal
component which lies in the plane through the origin perpendicular to n is rotated.

θ

u

n

O

Rn,θ(u) R3

If we denote the three-dimensional rotation by Rn,θ then it can be given explicitly in R3 by
Rodrigues’ rotation formula:

Rn,θ(u) = (cos θ)u+ (sin θ)(n× u) + (1− cos θ)(n · u)n .

Recalling the linear properties of the cross and dot product (Theorems 4-14 and 4-6 respectively):

n× (u+ v) = n× u+ n× v n · (u+ v) = n · u+ n · v
n× (cu) = c(n× u) n · (cu) = c(n · u)

it follows that Rn,θ is a linear transformation. Rotations in higher dimensions can similarly be
determined by using a normal direction n and a rotation in its orthogonal plane. The absence of
the cross product for general Rn does not hinder this.
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Example 6-8

Given the vectors u = (2, 0, 3) and v = (1, 3, 5) in R3 apply the following linear transformations.
Describe each transformation.

1. 1(u)

2. O3,3(u)

3. C2(u)

4. C 1
2
(u)

5. D(u)

6. Pi(u)

7. Pi,k(v)

8. Sk,2(u)

9. Si, 12
(u)

10. Qi(u)

11. Rk,π2
(u)

Solution:

1. 1(u) = u = (2, 0, 3), the identity transformation.

2. O3,3(u) = 0 = (0, 0, 0), the zero transformation.

3. C2(u) = 2u = (4, 0, 6), dilation by a factor of 2 .

4. C 1
2
(u) = 1

2u =
(
1, 0, 3

2

)
, contraction by a factor 1/2 .

5. D(u) = −u = (−2, 0,−3), inversion about the origin O .

6. Pi(u) = (u · i)i = (2, 0, 3) · (1, 0, 0)i = (2 + 0 + 0)i = 2i = (2, 0, 0), projection along the
direction of i, the x-axis.

7. Pi,k(v) = Pi(v) + Pk(v) = [(1, 3, 5) · i]i+ [(1, 3, 5) · k]k = 1i+ 5k = (1, 0, 5), projection onto
the x-z plane.

8. Sk,2(u) = u+ (2− 1)projku = (2, 0, 3) + 1[(2, 0, 3) · k]k = (2, 0, 3) + 3k = (2, 0, 6), expansion
in z direction by a factor of 3.

9. Si, 12
(u) = u+(1/2−1)projiu = (2, 0, 3)− 1

2 [(2, 0, 3) · i]︸ ︷︷ ︸
=2

i = (2, 0, 3)−i = (1, 0, 3), compression
in x direction by a factor of 1/2.

10. Qi(u) = u− 2projiu = (2, 0, 3)− 2[(2, 0, 3) · i]i = (2, 0, 3)− 4i = (−2, 0, 3), reflection across
plane with normal i (the y-z plane).

11. Noting that k · u = k · (2, 0, 3) = 3 and

k × u =

∣∣∣∣∣∣
i j k
0 0 1
2 0 3

∣∣∣∣∣∣ = i(0− 0)− j(0− 2) + k(0− 0) = 2j

we have

Rk,π2
(u) =

(
cos

π

2

)
u+

(
sin

π

2

)
k × u+

(
1− cos

π

2

)
(k · u)k

= (0)u+ (1)(2j) + (1− 0)(3)k

= 2j + 3k = (0, 2, 3),

a rotation of 90◦ about the positive z-axis.

The student is encouraged to plot and label all the points (vector tips) that lie in the x-z plane (i.e.
with y-component equal to zero) by using x as the horizontal axis and z as the vertical axis, to help
visualize the effect of the transformations.
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In Example 6-8 we transformed a single vector, or equivalently a single terminal point. In general we
are often interested in transforming a set of points which constitute an image or object in two or three
dimensions. It is worth considering the effect of such transformations on multiple points whereby their
meaning and application becomes clearer.

Rodrigues’ rotation formula can be used to determine Rθ in R2 by associating the vector (x, y) in R2

with the vector (x, y, 0) in the x-y plane of R3 and setting n = k.

Example 6-9

Let x = (x, y) in R2. Derive the formula for the linear transformation Rθ(x) by considering the effect
of rotating the vector u = (x, y, 0) in the x-y plane of R3 by the angle θ about the z-axis, i.e. about
the direction n = k. Show, by inspection, that the result can be written as the left-multiplication of
x = [ xy ] by an appropriate 2× 2 matrix.

Solution:
Since

k =

0
0
1

 and u =

xy
0

 = xi+ yj .

this implies

k · u =

0
0
1

 ·
xy

0

 = 0 + 0 + 0 = 0, and

k × u =

∣∣∣∣∣∣
i 0 x
j 0 y
k 1 0

∣∣∣∣∣∣ = i(0− y)− j(0− x) + k(0− 0) = −yi+ xj .

The rotation formula gives

Rk,θ(u) = (cos θ)u+ (sin θ)(k × u) + (1− cos θ)(k · u)k

= cos θ(xi+ yj) + sin θ(−yi+ xj) + 0

= ((cos θ)x− (sin θ)y) i+ ((sin θ)x+ (cos θ)y) j

Next by identifying x = [ xy ], i = [ 1
0 ], and j = [ 0

1 ] in R2, the two dimensional result is

Rθ(x) = ((cos θ)x− (sin θ)y) i+ ((sin θ)x+ (cos θ)y) j

= ((cos θ)x− (sin θ)y)

[
1
0

]
+ ((sin θ)x+ (cos θ)y)

[
0
1

]
=

[
(cos θ)x− (sin θ)y
(sin θ)x+ (cos θ)y

]
(← a vector in R2)

The last expression can be rewritten using matrix multiplication as

Rθ(x) =

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
.

Example 6-9 raises two interesting questions. We were able to represent a linear transformation by
a matrix multiplying the vector. Does multiplying a vector by some other matrix produce a linear
transformation? Secondly, can other linear transformations be similarly represented by multiplication
by a matrix?
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6.2 Matrix Transformations

Turning to our first question raised at the end of the last section we have the following definition.

Definition: Let A be an m× n matrix. A matrix transformation is the transformation from Rn
to Rm given by the matrix multiplication of vector u in Rn (written as a column matrix) on the
left by A :

LA(u) = Au .

That a matrix transformation is a linear transformation follows from the linearity of matrix multiplica-
tion.

Theorem 6-2: The matrix transformation LA(u) from Rn to Rm is a linear transformation.

Proof:
Let LA be a matrix transformation with A the m× n matrix. Suppose u and v are vectors in Rn and
c is a scalar, then we have the following:

LA(u+ v) = A(u+ v) = Au+Av = LA(u) + LA(v)

LA(cu) = A(cu) = c(Au) = cLA(u)

Example 6-10

Let A =

[
1 3
0 1

]
and let u =

[
1
1

]
and v =

[
2
2

]
be vectors. Find

1. LA(u)

2. LA(v)

3. LA(u+ v)

4. LA(5u)

Solution:

1. LA(u) = Au =

[
1 3
0 1

] [
1
1

]
=

[
1 + 3
0 + 1

]
=

[
4
1

]

2. LA(v) = Av =

[
1 3
0 1

] [
2
2

]
=

[
2 + 6
0 + 2

]
=

[
8
2

]

3. LA(u+ v) = A(u+ v) =

[
1 3
0 1

] [
1 + 2
1 + 2

]
=

[
1 3
0 1

] [
3
3

]
=

[
3 + 9
0 + 3

]
=

[
12
3

]
which equals LA(u) + LA(v) as expected.

4. LA(5u) = A(5u) =

[
1 3
0 1

](
5

[
1
1

])
=

[
1 3
0 1

] [
5
5

]
=

[
5 + 15
0 + 5

]
=

[
20
5

]
which equals 5LA(u) as expected.

Next let us consider the question of which linear transformations may be represented by matrix
transformations. It turns out that all of them are. To see why observe, the following important property
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of linear transformations. First we need our definition of linear combination with matrices applied to
vectors.

Definition: Let v1, v2, . . . , vk be vectors in Rn and c1, c2, . . . , ck be scalars. Then the vector

c1v1 + c2v2 + · · ·+ ckvk

is a linear combination of v1, v2, . . . , vk .

Theorem 6-3: Let L(u) be a linear transformation from Rn to Rm. If u is a linear combination of
vectors v1, v2,. . .vk in Rn, so that

u = c1v1 + c2v2 + · · ·+ ckvk ,

then
L(u) = c1L(v1) + c2L(v2) + · · ·+ ckL(vk) .

The implication of the theorem is that if you can decompose a vector into a linear combination of other
vectors, then knowledge of how the linear transformation acts on those vectors is sufficient to determine
how it acts on the original vector.

Example 6-11

Suppose u =

1
0
3

, v =

2
2
0

 and w =

 0
−2

6

 and let L(u) be a linear transformation from R3 to R2.

If L(u) =

[
1
1

]
and L(v) =

[
−2

3

]
, find L(w) .

Solution:
Our strategy is to write w as a linear combination of u and v (if possible) and then apply the
linearity of L to the result. If w = au+ bv then constants a and b must satisfy

au+ bv = a

1
0
3

+ b

2
2
0

 =

 a0
3a

+

2b
2b
0

 =

a+ 2b
2b
3a

 = w =

 0
−2

6


Equality of the vectors implies solving the system of equations

a+ 2b = 0

2b = −2

3a = 6

The second equation implies b = −1 and the third implies a = 2 . These values satisfy the first
equation, 2 + 2(−1) = 0, so this is a solution to the system and we have that w = 2u− 1v, which is
easily checked. The linearity of L implies

L(w) = L(2u− 1v) = L(2u) + L(−1v) = 2L(u) + (−1)L(v) = 2

[
1
1

]
− 1

[
−2

3

]
=

[
2 + 2
2− 3

]
=

[
4
−1

]
.
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Recall that e1, e2, . . . , en are the elementary vectors in Rn defined by e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0),
. . . , en = (0, 0, . . . , 1). Then {e1, e2, . . . , en} is called the standard basis of Rn. With respect to this
basis we saw that any vector u has the unique expansion1

u = (u1, u2, . . . , un) = u1e1 + u2e2 + · · ·unen .

Now consider acting on u by a linear transformation L that takes vectors from Rn to Rm.

L(u) = L(u1e1 + u2e2 + · · ·+ unen)

= u1L(e1) + u2L(e2) + · · ·+ unL(en)

Defining vectors ai = L(ei) in Rm this implies

L(u) = u1a1 + u2a2 + · · ·+ unan .

However, when discussing matrix multiplication of a vector (Section 2.14.2) we noted that this right
hand side equals Au if A = [a1a2 · · ·an] where ai is the ith column of A. Hence

L(u) = Au

where
A = [a1a2 · · ·an] = [L(e1)L(e2) · · ·L(en)]

is an m× n matrix whose ith column is the vector L(ei) . We summarize the result in the following
theorem.

Theorem 6-4: Let L be a linear transformation from Rn to Rm and let {e1, e2, . . . , en} be the standard
basis of Rn . Then L equals the matrix transformation LA where A is the unique m× n matrix

A = [L(e1)L(e2) · · ·L(en)] .

Here L(ei) is a vector in Rm written as a column matrix.

Proof:
The remaining item to show is that the matrix A is unique. We have seen that L(ei) = ai. Suppose
transformation L equalled a second matrix transformation LB . Then

L(ei) = LB(ei) = Bei = bi .

where bi is the ith column of B. The final equality follows due to the components of ei. Hence bi = ai.
Since the choice of i was arbitrary, B = A .

Since we have shown that every matrix transformation is linear and now that every linear transformation
equals a matrix transformation we have the following result.

Corollary: A transformation T is linear if and only if it equals a matrix transformation.

Theorem 6-4 gives a prescription for finding a matrix to represent any linear transformation L in terms
of the action of L on the elementary vectors ei. The latter can be found using the explicit forms of L
of common transformations found earlier, or one can deduce them directly from the transformation the
operator presents as the following examples show.

1Uniqueness follows for if u had some other expansion u = v1e1 + v2e2 + · · · vnen we could take the dot product of
each expansion with respect to ei to get u · ei = ui for the first and u · ei = vi for the second, showing ui = vi. Since i
was arbitrary the expansion is unique.
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Example 6-12

Find a matrix transformation equal to the linear transformation.

1. The reflection Qj in R2.

2. The dilation C2 in R2.

Solution:

1. The reflection Qj in R2 is a reflection across the line with normal j. Since j points along the
y-axis, the reflection is across the x-axis (i.e. the line y = 0). Such a reflection leaves the
vector i unchanged and takes j to −j. (This can be seen by thinking of the action of the
transformation on the endpoints (1, 0) and (0, 1) of i and j respectively.) In symbols

xi

j

y

(1, 0)

(0, 1)

−j

O

(0,−1)

y = 0

L(e1) = L(i) = i =

[
1
0

]
L(e2) = L(j) = −j = −1

[
0
1

]
=

[
0
−1

]

Thus Qj = LA where A = [L(e1)L(e2)] =

[
1 0
0 −1

]
.

2. The dilation C2 in R2 stretches all vectors by a factor of two, so, in particular the elementary
vectors transforms as

y

x

(0, 1)

j

iO (1, 0)

(0, 2)

2i (2, 0)

2j
L(e1) = L(i) = 2i = 2

[
1
0

]
=

[
2
0

]
L(e2) = L(j) = 2j = 2

[
0
1

]
=

[
0
2

]

Thus C2 = LA where A = [L(e1)L(e2)] =

[
2 0
0 2

]
.
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Example 6-13

Rederive the matrix transformation for Rθ in R2 using Theorem 6-4. Also find the transformation
for Rk,θ in R3 .

Solution:
The following diagram shows the effect of rotating the elementary vectors i and j by an arbitrary
counterclockwise rotation θ in R2.

θ
θ

O

R2

Rθ(i)
Rθ(j)

y

i

j

x

Consideration of the triangles shown and noting the hypotenuse of each is 1 since they sit on the
unit circle, gives the following components for Rθ(i) and Rθ(j) respectively:

Rθ(i) =

[
cos θ
sin θ

]
Rθ(j) =

[
− sin θ

cos θ

]
.

These are the columns of the equivalent matrix transformation for Rθ and we have that Rθ equals
the matrix transformation LA where

A =

[
cos θ − sin θ
sin θ cos θ

]
.

This is the matrix that was found in Example 6-9 .

In R3 if we rotate by θ about the z-axis the elementary vectors i and j stay in the plane while k is
unchanged and we have

Rk,θ(i) =

cos θ
sin θ

0

 Rk,θ(j) =

− sin θ
cos θ

0

 Rk,θ(k) =

0
0
1

 .
We see that the linear transformation Rk,θ equals the matrix transformation LB with matrix

B =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

By describing our basic linear transformations by vectors and their operations we were able to show
that they were linear by taking advantage of the linear properties of scalar, dot, and cross products. An
additional advantage of this approach is that we observe that a linear transformation is independent of
choice of Cartesian coordinates (aside from the fixed point origin upon which they all depended) just
as vectors are.

When considering matrix transformations we have defined them with respect to the standard basis
{e1, e2, . . . , en} of Rn. When using R3, say, to represent a physical problem then the components
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of a vector will depend on the orientation of the coordinate axes chosen in physical space which, in
turn, determine the directions the elementary vectors ei represent. The matrix A representing a linear
transformation L(u) such as a rotation of θ about a particular direction in physical space will itself
depend on this orientation of axes. Someone else choosing the same origin but a different orientation of
coordinate axes would find different components and matrix to represent the same physical vector and
linear transformation. It is a standard problem in linear algebra to consider how the components of
the same vector in different coordinate systems are related. Similarly one considers how the matrix
representations of the same operator in different systems are related.

Having chosen a particular orientation of coordinate system in space one can define a linear trans-
formation by a matrix transformation acting on the standard basis of that system. However the
matrix representation of that transformation in other coordinate systems will be, in general, a different
matrix. With further linear algebra, that matrix can be determined knowing the orientation of the
other coordinate system to the initial one.
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6.3 Composition of Linear Transformations

If f(x) = sinx and g(x) = x2, then the composition of functions f ◦g is defined by (f ◦g)(x) = f(g(x)) =
sin(x2), with g applied first and f applied to that result. Order in application of the functions typically
matters, as it does in this example where g ◦ f 6= f ◦ g since (g ◦ f)(x) = g(f(x)) = (sinx)2 which is a
different function. We have seen that linear combinations of transformations from Rn to Rm produced
new transformations and that if all the transformations were linear the new transformation was also
linear. To this method of producing new transformation we can add transformation composition.

Definition: If S is a transformation from Rm to Rl and T is a transformation from Rn to Rm then
the composition of transformations S ◦ T defined by

(S ◦ T )(u) = S(T (u)) ,

is a transformation from Rn to Rl.

Composition of more that two transformations is similarly accomplished. In the event the transforma-
tions are linear we have the following result.

Theorem 6-5: Let K be a linear transformation from Rm to Rl and let L be a linear transformation
from Rn to Rm equal to matrix transformations LA and LB respectively where A is an l ×m matrix
and B is an m× n matrix. Then the composition transformation K ◦ L defined by

(K ◦ L)(u) = K(L(u)) ,

is a linear transformation from Rn to Rl and equals the matrix transformation given by LAB where
AB is the l × n matrix product of A and B.

Proof:

(K ◦ L)(u) = K[L(u)] = K(Bu) = A(Bu) = (AB)u = LAB(u) .

Note the following:

1. The matrix of the transformation applied first is placed furthest to the right.

2. Composition of more than one linear transformation is possible (assuming the dimensions of R
align appropriately) and the result can be shown to be linear by induction.

3. The fact that function composition typically depends on the order of application of the functions
is mirrored by the fact that matrix multiplication does not, in general, commute (AB 6= BA).

Example 6-14

IfK is the reflection about the line y = x and L is the rotation Rπ
2
in R2, find a matrix transformation

equal to the composition K ◦ L. What, geometrically, is the new linear transformation?

Solution:
The line y = x is the diagonal with slope m = 1. Reflection of i across it goes to j and similarly j
becomes i. In other words, the endpoints (0, 1) and (1, 0) exchange locations. Thus

x
O

i

j

y

y = x

(1, 0)

(0, 1)

K(i) = j =

[
0
1

]
K(j) = i =

[
1
0

]
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so K = LA where A = [K(i)K(j)] =

[
0 1
1 0

]
.

L is a positive rotation of π2 = 90◦ which rotates i to j, i.e. point (1, 0) goes to (0, 1) . The vector j
is rotated to −i, i.e. point (0, 1) goes to (−1, 0) under the rotation. Thus

xi

j

y

(1, 0)(−1, 0)

(0, 1)

O
−i

L(i) = j =

[
0
1

]
L(j) = −i = −

[
1
0

]
=

[
−1

0

]

so L = LB where B = [L(i)L(j)] =

[
0 −1
1 0

]
.

The composition transformation K ◦ L is equivalent to the matrix transformation LAB where AB is
the product of the matrices

AB =

[
0 1
1 0

] [
0 −1
1 0

]
=

[
1 0
0 −1

]
.

The effect of the transformation composition on a vector is thus

K ◦ L(x) =

[
1 0
0 −1

] [
x
y

]
=

[
x
−y

]
.

We see that under K ◦ L the x-component is unchanged but the y-component is flipped. This a
reflection about the x-axis. The normal to that axis is the vector j and so we have the identification

K ◦ L = Qj .

Example 6-15

In addition to writing an arbitrary rotation in three dimensions by R = Rn,θ it is possible to write
it as a composition of three angular rotations about the axes of a fixed coordinate system with
basis {i,j,k}, such as

Rα,β,γ = Rk,γ ◦Rj,β ◦Ri,α .

The matrix transformation is then the product of the three corresponding matrices. The angles
(α, β, γ) are referred to as Euler Angles. There are many conventions for such angles. This
formulation of rotation has utility when describing the position of the axes of one coordinate system
with respect to another.
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6.4 Linear Operators

In most of the examples we have done so far our linear transformations have been from Rn back to
itself. This important class of transformations has its own name.

Definition: A linear operator is a linear transformation from Rn to Rn.

So dilations, contractions, inversions, expansions, compressions, reflections, and rotations are all linear
operators. The matrix of a linear operator from Rn to Rn will be a square matrix of order n and we
can classify our operators according to the type of matrix transformation they equal.

6.4.1 Symmetric Operators

Recall a symmetric matrix satisfies AT = A. Consideration of our general transformation Ck(u) = ku,
of which the identity, zero, dilation, contraction, inversion operators are special cases, show they all
give rise to symmetric matrix representations. For instance in R3 we have, by consideration of Ck(i),
etc., that Ck is equal to LA where

A =

k 0 0
0 k 0
0 0 k


which is clearly symmetric.

As another example, the projection operator Pn, where n = (nx, ny, nz) is a unit vector, has a symmetric
matrix representation. In R3 we find, by evaluating Pn(i), etc., that Pn is equal to LA where

A =

nxnx nynx nznx
nxny nyny nzny
nxnz nynz nznz

 ,
which is symmetric. Since (A+B)T = AT +BT = A+B for symmetric matrices A, B, it follows that
the sum of symmetric matrices is also symmetric. Therefore the more general orthogonal projection
Pn1,n2,...,nk will also induce a symmetric matrix.

As yet a further example consider the linear operator Sn,k of which compression, expansion, and
reflection are special cases. We saw that Sn,k could be written

Sn,k = 1 + (k − 1)Pn .

This will also be symmetric since (k − 1) is a scalar and (cA)T = cAT = cA if A is symmetric. This
implies that cA is symmetric if A is and adding this to symmetric 1 will still be symmetric. Explicitly
in R3 we have that Sn,k is equal to LA where

A =

1 + (k − 1)nxnx (k − 1)nynx (k − 1)nznx
(k − 1)nxny 1 + (k − 1)nyny (k − 1)nzny
(k − 1)nxnz (k − 1)nynz 1 + (k − 1)nznz

 ,
which explicitly is symmetric.

Definition: A linear operator on Rn equipped with the usual dot product is called symmetric if
it equals a matrix transformation LA where A is a symmetric matrix.
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The zero, identity, dilations, contraction, inversion, expansion, compression, and reflection operators
are therefore symmetric. The product of symmetric operators is also symmetric if A and B commute
since (AB)T = BTAT = BA = AB for two commuting symmetric matrices. As such we expect an
arbitrary symmetric matrix may be decomposable in terms of these types of matrices.

Theorem 6-6: A symmetric linear operator L on Rn satisfies

u · L(v) = L(u) · v ,

for all u and v in Rn .

Proof:
L equals LA where A is a symmetric matrix. Then for any u, v in Rn we have

u · L(v) = u · (Av) = (uT )Av = (uT )ATv = (Au)Tv = L(u) · v .

Note that this latter property can also be considered the definition of a symmetric linear operator since
it can be shown to imply a symmetric matrix representation.

6.4.2 Idempotent Operators

Recall an idempotent matrix satisfies A2 = A. It can be shown that the zero, identity, and projection
operators Pn and Pn1,n,...,nk induce idempotent matrix transformations. This can be shown explicitly
using our R3 version of Pn shown previously.

Definition: A linear operator on Rn equipped with the usual dot product is called idempotent if
it equals a matrix transformation LA where A is an idempotent matrix.

The zero, identity, and projection operators Pn and Pn1,n,...,nk are therefore idempotent.

Theorem 6-7: An idempotent linear operator L satisfies L ◦ L = L. That is, for any vector u in Rn

L(L(u)) = L(u) .

Proof: L equals LA where A is an idempotent matrix. Then for any u in Rn we have

L(L(u)) = L(Au) = A(Au) = (A2)u = Au = L(u) .

Note that this latter property can also be considered the definition of an idempotent linear operator
since it can be shown to imply an idempotent matrix representation.

6.4.3 Orthogonal Operators

Inversion, reflections, and rotations fall into an important group of linear operators which we now
explore. Recall an orthogonal matrix satisfies A−1 = AT . The identity operator’s matrix representation
is just I, an orthogonal matrix. The inversion operator has matrix representation −I which is also
orthogonal. The reflection operator Qn also equals a matrix transformation where A is orthogonal.
Finally rotations have orthogonal matrix representations.
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Example 6-16

The Rθ matrix given by A =

[
cos θ − sin θ
sin θ cos θ

]
is orthogonal since AT =

[
cos θ sin θ
− sin θ cos θ

]
and

AAT =

[
cos θ − sin θ
sin θ cos θ

] [
cos θ sin θ
− sin θ cos θ

]
=

[
cos2 θ + sin2 θ cos θ sin θ − sin θ cos θ

sin θ cos θ − cos θ sin θ cos2 θ + sin2 θ

]
=

[
1 0
0 1

]
= I .

Similarly ATA = I and thus A−1 = AT .

Using Rodrigues’ rotation formula to evaluate Rn,θ(i), etc. one can show that the rotation operator
equals LA where matrix A is:

A =

 cos θ + n2
x (1− cos θ) nxny (1− cos θ)− nz sin θ nxnz (1− cos θ) + ny sin θ

nynx (1− cos θ) + nz sin θ cos θ + n2
y (1− cos θ) nynz (1− cos θ)− nx sin θ

nznx (1− cos θ)− ny sin θ nzny (1− cos θ) + nx sin θ cos θ + n2
z (1− cos θ)

 .
This can be shown to be orthogonal as well.

Definition: A linear operator on Rn equipped with the usual dot product is called orthogonal if
it equals a matrix transformation LA where A is an orthogonal matrix.

The identity, inverse, reflection and rotation operators are therefore orthogonal. Orthogonal linear
operators have the following important property.

Theorem 6-8: If L is an orthogonal linear operator on Rn equipped with the usual dot product then
it preserves the dot product. For any vectors u and v in Rn we have

L(u) · L(v) = u · v .

Proof:
L equals LA where A is an orthogonal matrix. Then for any vectors u and v in Rn we have

L(u) · L(v) = (Au) · (Av) = (Au)T (Av) = (uTAT )(Av)

= uT (ATA)v = uT (A−1A)v = uT Iv = uTv = u · v .

Setting u = v shows ‖L(u)‖2 = L(u) · L(u) = u · u = ‖u‖2 from which the following corollary is
implied.

Corollary: An orthogonal linear operator L on Rn preserves the length of a vector, ‖L(u)‖ = ‖u‖ .

Note that property is clear for rotations, reflections, and inversions. Since angle between vectors can
be written in terms of the dot product and lengths of two vectors it follows that an orthogonal linear
operator also preserves angles between vectors.

Note that either the preservation of dot product or of length can be used to define an orthogonal linear
operator as they can be shown to be equivalent and they imply an orthogonal matrix representation.

Finally a product of orthogonal matrices is orthogonal since (AB)−1 = B−1A−1 = BTAT = (AB)T for
orthogonal matrices A and B. So we expect a general orthogonal matrix to be decomposable in terms
of rotations, reflections, and inversions.
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6.4.4 Polar Decomposition of Operators

To conclude this chapter we note the following theorem which shows that every matrix A can be
decomposed into a product of a symmetric and an orthogonal matrix.

Theorem 6-9: Let A be a square matrix with real entries. Then A can be written as the product of a
symmetric matrix S and an orthogonal matrix O as2

A = SO .

This is called the polar decomposition3 of A.

Since any linear operator on Rn equals a matrix operator LA we have the following corollary.

Corollary: If L is a linear operator on Rn then L can be written as the composition of a symmetric
operator S and an orthogonal operator O as

L = S ◦O .

These theorems are useful as they characterize all linear operators quite generally as being decomposable
into two operations. The first is a length-preserving orthogonal operation which will consist of a
composition of rotations, reflections, and inversions. This will then be followed by a symmetric operator
which will consist of a composition of operations that will typically scale and project the vector along
various directions.

2In fact the theorem is stronger than stated. The symmetric matrix found can be restricted to those that are positive
semi-definite (i.e. no reflections) and in the event that A is invertible this decomposition is unique.

3The term polar decomposition is used as it is analogous to the decomposition of a complex number as reiθ which,
upon multiplication of another complex number will scale it by a factor of r and rotate in the plane by an angle θ.
Complex numbers will be discussed in Chapter 9 .
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7.1 Subspaces of Rn

As the name suggests, a subspace S of Rn is a set of vectors contained within Rn. It inherits all the
properties of Rn. Additionally we require it be closed.

Definition: A non-empty subset S of vectors from Rn that is closed under vector addition and scalar
multiplication is called a subspace of Rn. Closure means that the vectors u+ v and cu are also
in S for any vectors u and v in S and scalar c.

Theorem 7-1: The zero vector 0n is an element of S for any subspace S of Rn.

Proof: Since S is non-empty let u be a vector in S. Then (−1)u = −u is also in S due to scalar
closure and so u+ (−u) = u− u = 0 lies in S due to closure under addition.

Note that S = {0n} is a subspace of Rn. Also S = Rn itself is a subspace of Rn.

Definition: A set of vectors B = {u1,u2, . . . ,uk} in subspace S is said to span S if every vector v in
S can be written as a linear combination of vectors from B. That is, there exist scalars c1, . . . , ck
such that

v = c1u1 + c2u2 + . . .+ uk ,

for every v in S .

Example 7-1

The standard basis B = {e1, . . . , en} spans Rn.

Conversely we can define the span of a set of vectors.

Definition: Let B = {u1,u2, . . . ,uk} be a set of k vectors from Rn. Then the span of the set,
denoted by span (B) = span{u1,u2, . . . ,uk}, is the set of all linear combinations of the vectors
in the set, i.e. all vectors

v = c1u1 + c2u2 + · · ·+ ckuk

where ci are scalars.

Since clearly the sum of two such linear combinations will still be a linear combination and the scalar
product of such a linear combination will also be so, we have the following non-trivial subspaces.

Theorem 7-2: The span of a set of vectors B = {u1,u2, . . . ,un} from Rn, span (B), is a subspace
of Rn.

Example 7-2

Let v be a nonzero vector in R2 or R3 and let t be a parameter. Then the line through the origin
given by the set

L = {x(t) = tv such that t is in R}
is a subspace of R2 or R3 respectively.

Example 7-3

Let u and v be two nonzero, noncollinear vectors in R3 and let s and t be parameters. Then the
plane through the origin given by the set

P = {x(s, t) = su+ tv such that s and t are in R}
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is a subspace of R3.

So in the previous examples the sum of two vectors or the product of one of them by a scalar will
remain in the subspace, line or plane, respectively.

As a final non-trivial subspace example consider the following.

Definition: If L is a linear transformation from Rn to Rm then the null space or kernel of L is the
set of all vectors in Rn satisfying L(u) = 0m.

If L equals matrix transformation LA for matrix A then it follows that the null space of L is the set of
solutions of the homogeneous linear system

Ax = 0 .

Theorem 7-3: The null space of a linear transformation L from Rn to Rm is a subspace of Rn.

Proof: Let u and v be vectors of Rn in the null space of linear transformation L and let c be a scalar.
Then

L(u+ v) = L(u) + L(v) = 0 + 0 = 0

L(cu) = cL(u) = c0 = 0

Thus u + v and cu will also lie in the null space of L and it is therefore closed under addition and
scalar multiplication and hence a subspace of Rn .
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7.2 Linear Independence

We are often interested in finding the fewest number of vectors required to span a subspace S. To that
end we define the following concept.

Definition: A set B = {v1,v2, . . . ,vn} of vectors from Rm is linearly independent if the vector
equation

c1v1 + c2v2 + . . .+ cnvn = 0

has only the solution ci = 0 for i = 1, . . . , n . Otherwise the set B is called linearly dependent.

Note the following:

• A set of two or more vectors is linearly dependent if and only if one of them can be expressed as
a linear combination of the others.

• A linearly independent set of vectors cannot contain the zero vector as, assuming it is the first
vector, v1 = 0, then c1 could be set to anything and all other scalars could be set to 0 thereby
providing a solution to the equation which was not identically zero.

• If we let A be the matrix whose ith column is the vector vi, so

A = [v1v2 · · ·vn]

then the previous vector equation is equivalent to a homogeneous system given by:

[
v1 v2 · · · vn

]

c1
c2
...
cn

 =


0
0
...
0


or

Ac = 0 .

If the system has the unique (trivial) solution c = 0, then the set B = {v1,v2, . . . ,vn} is linearly
independent. If this system has infinitely many solutions, then the set B is linearly dependent.

• If the matrix A is square this is further simplified. If detA 6= 0 then we have the unique (trivial)
solution and the set is independent. If detA = 0 then there are infinitely many solutions and the
set is dependent.

Example 7-4

Determine whether the given set of vectors is linearly dependent or independent.

1. B = {v1,v2} where v1 = (1, 1), v2 = (−1, 2) .

Solution:

c1v1 + c2v2 = 0

⇐⇒
[
1 −1
1 2

] [
c1
c2

]
=

[
0
0

]
Ac = 0
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Solving the system [A|0] directly we have:[
1 −1 0
1 2 0

]
⇓

R2 → R2 −R1

[
1 −1 0
0 3 0

]
⇔ c1 − c2 = 0

3c2 = 0

Using back-substitution:

• 3c2 = 0 =⇒ c2 = 0

• c1 − c2 = 0 =⇒ c1 − 0 = 0 =⇒ c1 = 0

So c = (0, 0) is the only solution and therefore B = {v1,v2} is a linearly independent set.
Alternatively, since A is square we can use the determinant:

detA =

∣∣∣∣1 −3
0 3

∣∣∣∣ = 1(2)− (−1)(1) = 3 6= 0

which implies B is a linearly independent set.

2. B = {v1,v2,v3} where v1 = (1, 1,−2), v2 = (2, 5,−1), and v3 = (0, 1, 1) .

Solution:
We must consider the solutions c = (c1, c2, c3) for the following system:

c1v1 + c2v2 + c3v3 = 0

⇐⇒

 1 2 0
1 5 1
−2 −1 1

c1c2
c3

 =

0
0
0


Ac = 0

Expanding coefficient matrix A along the first row, we have

detA =

∣∣∣∣∣∣
1 2 0
1 5 1
−2 −1 1

∣∣∣∣∣∣ = (1)(+1)(5 + 1) + 2(−1)(1 + 2) + 0 = 6− 2(3) = 0

Therefore there are infinitely many solutions for c = (c1, c2, c3) and set B = {v1,v2,v3} is
linearly dependent.

3. B = {v1,v2,v3} where v1 = (0, 0, 2, 2), v2 = (3, 3, 0, 0), and v3 = (1, 1, 0,−1) .

Solution:

c1v1 + c2v2 + c3v3 = 0

⇐⇒


0 3 1
0 3 1
2 0 0
2 0 −1


c1c2
c3

 =


0
0
0
0


Ac = 0
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Since A is not square so solve the system using [A|0] :
0 3 1 0
0 3 1 0
2 0 0 0
2 0 −1 0


⇓

R1 ↔ R3


2 0 0 0
0 3 1 0
0 3 1 0
2 0 −1 0


⇓

R3 → R3 −R2

R4 → R4 −R1


2 0 0 0
0 3 1 0
0 0 0 0
0 0 −1 0


⇓

R3 ↔ R4


2 0 0 0
0 3 1 0
0 0 −1 0
0 0 0 0

 ⇔
2c1 = 0

3c2 + c3 = 0

−c3 = 0

0 = 0

Using back-substitution:

• −c3 = 0 =⇒ c3 = 0

• 3c2 + c3 = 0 =⇒ 3c2 + 0 = 0 =⇒ c2 = 0

• 2c1 = 0 =⇒ c1 = 0

Therefore the only solution is (c1, c2, c3) = 0 and B = {v1,v2,v3} is linearly independent.

Definition: Let S be a subspace of Rn then if B = {u1,u2, . . .uk} is a linearly independent set of
vectors that spans S, then B is called a basis for S.

Example 7-5

The standard basis B = {e1, e2, . . . , en} is a basis for Rn.

Example 7-6

The set B = {v} where v is a nonzero vector is a basis for the line L in R2 or R3 given in Example 7-2 .
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Example 7-7

The set B = {u,v} where u and v are nonzero, noncollinear vectors is a basis for the plane P in R3

given in Example 7-3 .

Note the following:

• A basis for S is made up of the smallest number of vectors that will span S.

• While the vectors that make up a basis for S are not unique, it can be shown that every basis
must have the same number of elements. This is called the dimension of S. So the line L in R2

or R3 has dimension of 1, and the plane P in R3 has dimension of 2 as expected.

• If Rn is equipped with the usual dot product, note that the vectors in the basis for a subspace S
need not be unit vectors nor do they need to be mutually orthogonal. However it can be shown
that given such a basis one can always construct a new basis that has these properties. One such
procedure is called the Gram-Schmidt process. Such a basis is called an orthonormal basis.
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8.1 Eigenvalues and Eigenvectors

Definition: Let A be a square n×n matrix. A scalar λ is said to be an eigenvalue or a characteristic
value of A if there exists a nonzero vector x in Rn such that:

Ax = λx .

The nonzero vector x is called an eigenvector of A corresponding to the eigenvalue λ .

Example 8-1

Show x =

[
2
1

]
is an eigenvector of A =

[
4 −2
1 1

]
and find its corresponding eigenvalue.

Solution:
Ax =

[
4 −2
1 1

] [
2
1

]
=

[
8− 2
2 + 1

]
=

[
6
3

]
= 3

[
2
1

]
Thus Ax = 3x and therefore x =

[
2
1

]
is an eigenvector of A corresponding to eigenvalue λ = 3 .

Example 8-2

Show x = (−2, 1, 1) is an eigenvector of A =

0 0 −2
1 2 1
1 0 3

 and find its corresponding eigenvalue.

Solution:

Ax =

0 0 −2
1 2 1
1 0 3

−2
1
1

 =

 0 + 0− 2
−2 + 2 + 1
−2 + 0 + 3

 =

−2
1
1

 = (1)x

Thus Ax = 1x and x = (−2, 1, 1) is an eigenvector of A corresponding to eigenvalue λ = 1.

A nonzero scalar multiple of an eigenvector of A also is an eigenvector of A.

Example 8-3

In Example 8-2 it was shown x = (−2, 1, 1) was an eigenvector of A corresponding to eigenvalue
λ = 1. Then 2x = (−4, 2, 2) is also an eigenvector corresponding to λ = 1 since

A(2x) =

0 0 −2
1 2 1
1 0 3

−4
2
2

 =

 0 + 0− 4
−4 + 4 + 2
−4 + 0 + 6

 =

−4
2
2

 = (1)

−4
2
2

 = (1)(2x)

Therefore 2x is also an eigenvector of A with the same eigenvalue of λ = 1.

Additionally if two eigenvectors correspond to the same eigenvalue λ of A their sum will also be an
eigenvector of A. We summarize these results in the following theorem.

Theorem 8-1: If u and v are eigenvectors of A associated with the same eigenvalue λ, and c is a
scalar then u+ v and cu are also eigenvectors of A associated with λ provided they do not equal the
zero vector. (i.e. v 6= −u and c 6= 0.)
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Proof:
Let u, v be eigenvectors of A corresponding to eigenvalue λ and let c be a scalar. Then

A(u+ v) = Au+Av = λu+ λv = λ(u+ v)

A(cu) = c(Au) = c(λu) = λ(cu) .

It follows from Theorem 8-1 that the eigenvectors corresponding to a particular eigenvalue λ of A
combined with the zero vector 0 form a subspace of Rn.

Definition: The subspace of Rn consisting of all eigenvectors x associated with a particular eigenvalue
λ of A and the zero vector is called the eigenspace of A corresponding to λ .
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8.2 Finding Eigenvalues and Eigenvectors

Recall that if B is a square matrix of order n then the homogeneous system Bx = 0 has the unique
trivial solution x = 0 if detB 6= 0 and it have infinitely many nontrivial solutions if detB = 0 . We can
cast the problem of finding eigenvalues and eigenvectors of the n× n square matrix A in this form by
solving the eigenvalue equation for x .

Ax = λx

⇒ Ax− λx = 0

⇒ Ax− λIx = 0

⇒ (A− λI)x = 0

Setting B = A− λI it follows that to have non-trivial (x 6= 0) solutions to this system of n equations
in n unknowns we require

det(A− λI) = 0 .

Theorem 8-2: Let A be an n × n matrix. The number λ is an eigenvalue of A if and only if
det(A− λI) = 0.

Consideration of the form of the determinant shows the left hand side of the equation is a polynomial
in λ with coefficients determined by A. With that in mind we have the following definition.

Definition: The polynomial PA(λ) = det(A− λI) is called the characteristic polynomial of A and
the equation det(A− λI) = 0 is called its characteristic equation.

To find the eigenvalues of a matrix A and their associated eigenvectors now becomes a two step process:

1. Solve the characteristic equation for the eigenvalues of A.

2. For each eigenvalue λ solve the linear system (A− λI)x = 0 for x to find its associated
eigenvectors.

Example 8-4

Find the eigenvalues and eigenvectors of the given matrix.

A =

[
2 3
4 3

]
Solution:

det(A− λI) =

∣∣∣∣2− λ 3
4 3− λ

∣∣∣∣ = 0

⇒ (2− λ)(3− λ)− 12 = 0

⇒ 6− 2λ− 3λ+ λ2 − 12 = 0

⇒ λ2 − 5λ− 6 = 0

⇒ (λ− 6)(λ+ 1) = 0

⇒
{
λ1 = 6

λ2 = −1
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λ1 = 6 :
To find the eigenvalues x1 = (x1, x2) corresponding to λ1 we need to solve:

(A− 6I)x1 = 0

Since
A− 6I =

[
2 3
4 3

]
− 6

[
1 0
0 1

]
=

[
−4 3

4 −3

]
this can be done using the augmented matrix as follows[

−4 3 0
4 −3 0

]
⇓

R2 → R2 +R1

[
-4 3 0

0 0 0

]
⇔
−4x1 + 3x2 = 0

0 = 0

Here we have circled the leading entry. Back-substitution in the linear system gives

• x2 = t

• −4x1 + 3x2 = 0 =⇒ −4x1 + 3t = 0 =⇒ x1 =
3

4
t

Thus the eigenvectors are x1 =

[
3
4 t
t

]
= t

[
3
4
1

]
= 1

4 t

[
3
4

]
and {(3, 4)} is a basis for the λ = 6

eigenspace.

λ2 = −1 :

(A− (−1)I)x2 = 0

(A+ I)x2 = 0[
3 3 0
4 4 0

]
⇓

R1 → 1
3R1

R2 → 1
4R2

[
1 1 0

1 1 0

]
⇓

R2 → R2 −R1

[
1 1 0
0 0 0

]
• x2 = t

• x1 + x2 = 0 =⇒ x1 + t = 0 =⇒ x1 = −t

The eigenvectors are x2 =

[
−t
t

]
= t

[
−1

1

]
and {(−1, 2)} is a basis for the λ = −1 eigenspace.
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Note:

• Since the eigenvalues of a square matrix A are the solutions of the corresponding characteristic
equation (i.e. roots or zeroes of the characteristic polynomial), it follows by the Fundamental
Theorem of Algebra that an n×n matrix A has at least one eigenvalue and at most n numerically
different eigenvalues. (So a 3× 3 matrix has 1, 2, or 3 eigenvalues). However these eigenvalues
may not all be real-valued.

• Since the eigenvectors corresponding to λ are solutions of

(A− λI)x = 0

the eigenspace of A corresponding to eigenvalue λ is the null space of the matrix B = A− λI .
i.e. the solutions of Bx = 0 . The basic solution eigenvectors will span the eigenspace. So in
Example 8-4 {(3, 4)} is a basis for the λ = 6 eigenspace and {(−1, 1)} is a basis for the λ = −1
eigenspace.

Example 8-5

Find the eigenvalues and bases for the eigenspaces of the given matrix.

A =

5 −7 7
4 −3 4
4 −1 2


Solution:
First find the eigenvalues:

det(A− λI) = 0

⇒

∣∣∣∣∣∣
5− λ −7 7

4 −3− λ 4
4 −1 2− λ

∣∣∣∣∣∣ = 0

⇒ (5− λ)[(−3− λ)(2− λ) + 4] + 7[4(2− λ)− 16] + 7[−4− 4(−3− λ)] = 0

⇒ (5− λ)[λ2 + λ− 2] + 7[−4λ− 8] + 7[4λ+ 8] = 0

⇒ 5λ2 + 5λ− 10− λ3 − λ2 + 2λ = 0 (Simplify and multiply both sides by −1 .)

⇒ λ3 − 4λ2 − 7λ+ 10 = 0 (Note λ = 1 solves this. Group to get (λ− 1) factor.)

⇒ λ3 − 4λ2 − 7λ+ 7 + 4− 1 = 0

⇒ (λ3 − 1)− 4(λ2 − 1)− 7(λ− 1) = 0 (Use a3 − b3 = (a− b)(a2 + ab+ b2) .)

⇒ (λ− 1)(λ2 + λ+ 1)− 4(λ+ 1)(λ− 1)− 7(λ− 1) = 0

⇒ (λ− 1)[λ2 + λ+ 1− 4(λ+ 1)− 7] = 0

⇒ (λ− 1)(λ2 − 3λ− 10) = 0

⇒ (λ− 1)(λ− 5)(λ+ 2) = 0

⇒


λ1 = 1

λ2 = 5

λ3 = −2

λ1 = 1 :
(A− (1)I)x1 = 04 −7 7 0

4 −4 4 0
4 −1 1 0


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⇓

R2 → R2 −R1

R3 → R3 −R1

4 −7 7 0
0 3 −3 0
0 6 −6 0


⇓

R3 → R3 − 2R2

 4 −7 7 0

0 3 −3 0
0 0 0 0


• x3 = t

• 3x2 − 3x3 = 0 =⇒ 3x2 − 3t = 0 =⇒ x2 = t

• 4x1 − 7x2 + 7x3 = 0 =⇒ 4x1 − 7t+ 7t = 0 =⇒ x1 = 0

Therefore x1 =

0
t
t

 = t

0
1
1

 and so {(0, 1, 1)} is a basis for the λ = 1 eigenspace.

λ2 = 5 :
(A− 5I)x2 = 00 −7 7 0
4 −8 4 0
4 −1 −3 0


⇓

R1 ↔ R3

4 −1 −3 0
4 −8 4 0
0 −7 7 0


⇓

R2 → R2 −R1

4 −1 −3 0
0 −7 7 0
0 −7 7 0


⇓

R3 → R3 −R2

 4 −1 −3 0

0 -7 7 0

0 0 0 0


• x3 = t

• −7x2 + 7x3 = 0 =⇒ −7x2 + 7t = 0 =⇒ x2 = t

• 4x1 − x2 − 3x3 = 0 =⇒ 4x1 − t− 3t = 0 =⇒ x1 = t

Therefore x2 =

tt
t

 = t

1
1
1

 and so {(1, 1, 1)} is a basis for the λ = 5 eigenspace.
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λ3 = −2 :

(A− (−2)I)x3 = 0

(A+ 2I)x3 = 07 −7 7 0
4 −1 4 0
4 −1 4 0


⇓

R1 → 1
7R1

R3 → R3 −R2

1 −1 1 0
4 −1 4 0
0 0 0 0


⇓

R2 → R2 − 4R1

 1 −1 1 0

0 3 0 0
0 0 0 0


• x3 = t

• 3x2 = 0 =⇒ x2 = 0

• x1 − x2 + x3 = 0 =⇒ x1 − 0 + t = 0 =⇒ x1 = −t

Therefore x3 =

−t0
t

 = t

−1
0
1

 and so {(−1, 0, 1)} is a basis for the λ = −2 eigenspace.

It can occur that the characteristic polynomial PA(λ) contains a particular eigenvalue λ more than
once as a root. Additionally the corresponding eigenspace of λ may have a dimension greater than one.

Definition: The algebraic multiplicity M of an eigenvalue λ of square matrix A is the number of
times it appears as a root of the characteristic polynomial PA(λ). The geometric multiplicity
m of eigenvalue λ of A is the number of linearly independent eigenvectors corresponding to λ, i.e.
the dimension of the eigenspace of λ.

The two multiplicities are related as follows.

Theorem 8-3: If λ is an eigenvalue of A with algebraic multiplicity M then the number m of linearly
independent eigenvectors associated with λ (its geometric multiplicity) satisfies

1 ≤ m ≤M .



Eigenvalues and Eigenvectors 189

Example 8-6

Find the eigenvalues and eigenvectors of the given matrix. Identify the algebraic and geometric
multiplicities of each eigenvalue.

A =

2 −5 5
0 3 −1
0 −1 3


Solution:

det(A− λI) = 0

⇒

∣∣∣∣∣∣
2− λ −5 5

0 3− λ −1
0 −1 3− λ

∣∣∣∣∣∣ = 0

⇒ (2− λ)
[
(3− λ)2 − 1

]
= 0

⇒ (2− λ)(9− 6λ+ λ2 − 1) = 0

⇒ (2− λ)(λ2 − 6λ+ 8) = 0 (Multiply both sides by -1 and factor.)
⇒ (λ− 4)(λ− 2)(λ− 2) = 0

⇒
{
λ1 = 4, M1 = 1

λ2 = 2, M2 = 2

Next find the corresponding eigenvectors.

λ1 = 4 :
(A− 4I)x1 = 0−2 −5 5 0
0 −1 −1 0
0 −1 −1 0


⇓

R3 → R3 −R2

 -2 −5 5 0

0 -1 −1 0

0 0 0 0


• x3 = t

• −x2 − x3 = 0 =⇒ −x2 − t = 0 =⇒ x2 = −t
• −2x1 − 5x2 + 5x3 = 0 =⇒ −2x1 − 5(−t) + 5t = 0 =⇒ x1 = 5t

Therefore x1 =

 5t
−t
t

 = t

 5
−1

1

, so {(5,−1, 1)} is a basis for the λ = 4 eigenspace and the

geometric multiplicity of λ1 = 4 is m1 = 1 .

λ2 = 2 :
(A− 2I)x2 = 00 −5 5 0
0 1 −1 0
0 −1 1 0


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⇓

R1 → − 1
5R1

0 1 −1 0
0 1 −1 0
0 −1 1 0


⇓

R2 → R2 −R1

R3 → R3 +R1

0 1 −1 0
0 0 0 0
0 0 0 0


• x1 = t

• x3 = s

• x2 − x3 = 0 =⇒ x2 − s = 0 =⇒ x2 = s

Therefore x2 =

ts
s

 = t

1
0
0

+s

0
1
1

, so {(1, 0, 0), (0, 1, 1)} is a basis (check linear independence)

for the λ = 2 eigenspace and the geometric multiplicity of λ2 = 2 is m2 = 2 .

In this example the geometric multiplicity equalled the algebraic multiplicity for both eigenval-
ues.
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8.3 Linear Independence of Eigenvectors

The following can be proved by induction.

Theorem 8-4: If B = {x1,x2, . . . ,xk} is a set of eigenvectors of n × n matrix A corresponding to
distinct eigenvalues (so λi 6= λj for i 6= j) then B is linearly independent.

As a special case when all the eigenvalues of A are distinct we have the following.

Corollary: Let A be a n× n matrix. If A has n distinct eigenvalues, then A has a set of n linearly
independent eigenvectors.

A more general result than the corollary is the following, proved similarly to the original theorem.

Theorem 8-5: Let A be an n × n matrix. If the geometric multiplicity m of each eigenvalue of A
equals its algebraic multiplicity M then A has a set of n linearly independent eigenvectors.

Example 8-7

In Example 8-5 we found the matrix

A =

5 −7 7
4 −3 4
4 −1 2


had distinct eigenvalues λ1 = 1, λ2 = 5, and λ3 = −1 with corresponding eigenvectors v1 = (0, 1, 1),
v2 = (1, 1, 1), and v3 = (−1, 0, 1). Evaluating the following determinant along the first row∣∣∣∣∣∣

0 1 −1
1 1 0
1 1 1

∣∣∣∣∣∣ = 0 + 1(−1)(1− 0) + (−1)(+1)(1− 1) = −1 6= 0

shows the set {v1,v2,v3} is linearly independent as expected from the corollary.
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8.4 Diagonalization

8.4.1 Properties of Diagonal Matrices

Recall that an n× n matrix D = [dij ] is called diagonal if every entry not on the main diagonal is zero,
i.e. if dij = 0 whenever i 6= j . In general an n× n diagonal matrix has the form:

D =


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn

 .
Note that some of the d1, d2, · · · , dn values may be equal to zero.

Example 8-8

The following matrices are diagonal.

A =

2 0 0
0 −1 0
0 0 5

 D =


4 0 0 0
0 1 0 0
0 0 0 0
0 0 0 5



Diagonal matrices have convenient properties.

Theorem 8-6: Let D =


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn

 andW =


w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...
0 0 · · · wn

 be n×n diagonal matrices.

Then:

1. DW = WD =


d1w1 0 · · · 0

0 d2w2 · · · 0
...

...
. . .

...
0 0 · · · dnwn


2. detD = (d1)(d2) · · · (dn)

3. D is nonsingular (invertible) if and only if each entry on the main diagonal is nonzero (di 6= 0) in
which case

D−1 =


1
d1

0 · · · 0

0 1
d2
· · · 0

...
...

. . .
...

0 0 · · · 1
dn

 .
4. The eigenvalues of D are its main diagonal entries: d1, d2, . . . , dn .
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Example 8-9

Find the inverse of the given matrix.

1. D =


2 0 0 0
0 −3 0 0
0 0 4 0
0 0 0 −1


Solution:
Since di 6= 0 for i = 1, 2, 3, 4 then D−1 exists with

D−1 =


1
2 0 0 0
0 − 1

3 0 0
0 0 1

4 0
0 0 0 −1



2. D =

−1 0 0
0 4 0
0 0 0


Solution:
d3 = 0 so D is noninvertible.

8.4.2 Diagonalizable Matrices

Most matrices are not diagonal, but some are related to diagonal matrices.

Definition: If A and B are n× n matrices then A is similar to B if there exits an invertible matrix
P satisfying

P−1AP = B .

A matrix A will be diagonalizable if it is similar to a diagonal matrix.

Definition: Let A be a n×n matrix. Then A is diagonizable if there exists an n×n invertible matrix
P such that P−1AP is a diagonal matrix. When such a P exists we say that P diagonalizes A .

Theorem 8-7: (Conditions for diagonalizability)
Let A be an n× n matrix with eigenvalues λ1, λ2, . . . , λn. Let v1,v2, . . . ,vn be eigenvectors of A with
vj associated with λj . Suppose that these eigenvectors are linearly independent and let P be the n× n
matrix having vj as its jth column, so P = [v1v2 · · ·vn] . Then P is nonsingular (invertible) and

P−1AP =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 = D

The diagonal matrix D has the eigenvalues of A along its main diagonal in the same order as the
eigenvectors are listed as columns of P .
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Remarks:

1. P−1 exists because detP 6= 0 since the eigenvectors are linearly independent.

2. The eigenvalues of A need not be distinct. So λ1, λ2, . . . , λn in the theorem includes multiplicity.

3. The necessary condition for A to be diagonizable is that it have n linearly independent eigenvectors.

4. If A has n distinct eigenvalues or all the eigenvalues have equal algebraic and geometric multiplicity
then A will automatically have n linearly independent eigenvectors and hence be diagonalizable.

Example 8-10

Diagonalize the given matrix if possible.

1.
A =

[
2 3
4 3

]
Solution:
From Example 8-4 matrix A had two distinct eigenvalues λ1 = 6, λ2 = −1 with corresponding
(linearly independent) eigenvectors v1 = (3, 4) and v2 = (−1, 1). So A is diagonalizable by

P = [v1v2] =

[
3 −1
4 1

]
.

Check:

P−1AP =
1

7

[
1 1
−4 3

] [
2 3
4 3

] [
3 −1
4 1

]
=

1

7

[
1 1
−4 3

] [
18 1
24 −1

]
=

1

7

[
42 0
0 −7

]
=

[
6 0
0 −1

]
=

[
λ1 0
0 λ2

]
= D

2.

A =

5 −7 7
4 −3 4
4 −1 2


Solution:
From Example 8-5 matrix A had three distinct eigenvalues λ1 = 1, λ2 = 5, and λ3 = −2
with corresponding (linearly independent) eigenvectors v1 = (0, 1, 1), v2 = (1, 1, 1), and
v3 = (−1, 0, 1). So A is diagonalizable by

P = [v1v2v3] =

0 1 −1
1 1 0
1 1 1

 .
Check:

P−1AP =

−1 2 −1
1 −1 1
0 −1 1

5 −7 7
4 −3 4
4 −1 2

0 1 −1
1 1 0
1 1 1

 =

1 0 0
0 5 0
0 0 −2

 =

λ1 0 0
0 λ2 0
0 0 λ3

 = D

3.

A =

2 −5 5
0 3 −1
0 −1 3


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Solution:
From Example 8-6 matrix A had two eigenvalues but each had algebraic multiplicity equalling
geometric multiplicity. Then λ1 = 4, λ2 = 2, and λ3 = 2 with corresponding (linearly inde-
pendent) eigenvectors v1 = (5,−1, 1), v2 = (1, 0, 0), and v3 = (0, 1, 1). So A is diagonalizable
by

P = [v1v2v3] =

 5 1 0
−1 0 1

1 0 1

 .
Check:

P−1AP =
1

2

0 −1 1
2 5 −5
0 1 1

2 −5 5
0 3 −1
0 −1 3

 5 1 0
−1 0 1

1 0 1

 =

4 0 0
0 2 0
0 0 2

 =

λ1 0 0
0 λ2 0
0 0 λ3

 = D

Not every matrix is diagonalizable as shown in the next example.

Example 8-11

Diagonalize the given matrix if possible.

A =

−2 0 1
1 1 0
0 0 −2


Solution:

det(A− λI) = 0

⇒

∣∣∣∣∣∣
−2− λ 0 1

1 1− λ 0
0 0 −2− λ

∣∣∣∣∣∣ = 0

⇒ (−2− λ)(1− λ)(−2− λ) = 0

⇒ (1− λ)(λ+ 2)2 = 0

⇒
{
λ1 = 1, M1 = 1

λ2 = −2, M2 = 2

λ1 = 1:
(A− (1)I)x1 = 0−3 0 1 0

1 0 0 0
0 0 −3 0


⇓

R1 ↔ R2

 1 0 0 0
−3 0 1 0

0 0 −3 0


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⇓

R2 → R2 + 3R1

1 0 0 0
0 0 1 0
0 0 −3 0


⇓

R3 → R3 + 3R2

 1 0 0 0

0 0 1 0
0 0 0 0


• x2 = t

• x3 = 0

• x1 = 0

Therefore x1 =

0
t
0

 = t

0
1
0

 and {(0, 1, 0)} is a basis for the λ = 1 eigenspace.

λ2 = −2 :

(A− (−2)I)x2 = 0

(A+ 2I)x2 = 00 0 1 0
1 3 0 0
0 0 0 0


⇓

R1 ↔ R2

 1 3 0 0

0 0 1 0
0 0 0 0


• x2 = t

• x3 = 0

• x1 + 3x2 = 0 =⇒ x1 + 3t = 0 =⇒ x1 = −3t

Therefore x2 =

−3t
t
0

 = t

−3
1
0

 and {(−3, 1, 0)} is a basis for the λ = −2 eigenspace.

So geometric multiplicity is m2 = 1. Since m2 = 1 < M2 = 2, A is not diagonalizable.
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8.4.3 Applications of Diagonalization

If an n× n matrix A is diagonalizable, then:

P−1AP = D

where D is a diagonal matrix. We can solve for A in terms of D by premultiplying by P and
postmultiplying by P−1 on both sides to get:

P−1AP = D

P (P−1AP )P−1 = PDP−1

(PP−1)A(PP−1) = PDP−1

IAI = PDP−1

A = PDP−1

Recalling that the mth power of square matrix A is just the product of A multiplied m times we have

Am = AA · · ·A︸ ︷︷ ︸
m times

= (PDP−1)(PDP−1) · · · (PDP−1)

= PD(P−1P )D(P−1P ) · · · (P−1P )DP−1

= PDIDI · · ·DP−1

= P DD · · ·D︸ ︷︷ ︸
m times

P−1

= PDmP−1

where

Dm =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


m

=


λm1 0 · · · 0
0 λm2 · · · 0
...

...
. . .

...
0 0 · · · λmn

 .
We observe that the same P that diagonalizes A also diagonalizes Am and furthermore that the
eigenvalues of Am appearing in its diagonal matrix are λmi . This is the case since if x is an eigenvector
of A corresponding to eigenvalue λ we have that x is also an eigenvector of Am corresponding to
eigenvalue λm since

Amx = Am−1Ax = Am−1λx = λAm−1x = . . . = λmx .

More generally yet, the matrix P will diagonalize any polynomial function of diagonalizable matrix A,
p(A). It will have the same eigenvectors as A and its eigenvalues will be p(λi) .

A direct application of the result Am = PDmP−1 is the simplicity of taking large powers of a
diagonalizable matrix.
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Example 8-12

Find A10 if A =

[
3 −2
−4 1

]
.

Solution:

det(A− λI) = 0∣∣∣∣3− λ −2
−4 1− λ

∣∣∣∣ = 0

(3− λ)(1− λ)− 8 = 0

3− 3λ− λ+ λ2 − 8 = 0

λ2 − 4λ− 5 = 0

(λ− 5)(λ+ 1) = 0{
λ1 = 5

λ2 = −1

λ1 = 5:
(A− 5I)x1 = 0[
−2 −2 0
−4 −4 0

]
⇓

R1 → − 1
2R1

R2 → R2 − 2R1

[
1 1 0

0 0 0

]

• x2 = t

• x1 + x2 = 0 =⇒ x1 + t = 0 =⇒ x1 = −t

Therefore x1 =

[
−t
t

]
= t

[
−1

1

]
so {v1} = {(−1, 1)} is a basis for the λ = 5 eigenspace.

λ2 = −1:
(A+ I)x2 = 0[

4 −2 0
−4 2 0

]
⇓

R1 → 1
4R1

R2 → R2 +R1

[
1 − 1

2 0

0 0 0

]

• x2 = t

• x1 − 1
2x2 = 0 =⇒ x1 − 1

2 t = 0 =⇒ x1 =
1

2
t

Therefore x2 =

[
1
2 t
t

]
= 1

2 t

[
1
2

]
so {v2} = {(1, 2)} is a basis for the λ = −1 eigenspace.
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Then P = [v1v2] =

[
−1 1

1 2

]
and D =

[
5 0
0 −1

]
.

We find P−1 = 1
3

[
−2 1

1 1

]
.

Finally we have

Am = PDmP−1

A10 = PD10P−1

=

[
−1 1

1 2

] [
510 0
0 (−1)10

]
1

3

[
−2 1

1 1

]
=

1

3

[
−(5)10 1

510 2

] [
−2 1

1 1

]
=

1

3

[
2(510) + 1 −510 + 1
−2(510) + 2 510 + 2

]
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8.5 Properties of Eigenvalues

Definition: Let A = [aij ] be an n× n matrix. Then the trace of matrix A, denoted by tr (A) is
the sum of the diagonal entries of A,

tr (A) = a11 + a22 + . . .+ ann .

Example 8-13

Find the trace of A =

 5 4 −3
2 1 0
−1 4 −2


Solution:

tr (A) = 5 + 1 + (−2) = 4

Theorem 8-8: Let A1, A2, . . .Ak be square matrices of order n. Then the trace of the product,
tr (A1A2 · · ·Ak) is invariant under cyclic permutations,

tr (A1A2 · · ·Ak) = tr (A2A3 · · ·AkA1) = tr (A3A4 · · ·AkA1A2) = . . .

Theorem 8-9: Let A be an n× n matrix with eigenvalues λ1, λ2, . . . , λn, where here we are allowing
for multiplicity. Then:

1. detA = λ1λ2 · · ·λn
2. tr (A) = λ1 + λ2 + · · ·+ λn

Proof:
We prove the theorem in the event that matrix A is diagonalizable. It is more generally true.1 Let A
be diagonalized by matrix P so P−1AP = D where D is diagonal with eigenvalues λi on the diagonal.
Then A = PDP−1 and

1. detA = det
(
PDP−1

)
= det

(
PP−1D

)
= det (ID) = detD = λ1λ2 · · ·λn

2. tr (A) = tr
(
PDP−1

)
= tr

(
DP−1P

)
= tr (DI) = tr (D) = λ1 + λ2 + · · ·+ λn

where here we used that we can commute matrices under a determinant as well as the invariance of the
trace under cyclic permutation of the matrices.

Example 8-14

Verify the properties of Theorem 8-9 for the following matrix.

A =

2 −5 5
0 3 −1
0 −1 3


1In the more general case it can be shown that any square matrix A is similar to an upper triangular matrix with the

eigenvalues of A along the diagonal. This is called the Jordan normal form of A. Because the latter matrix has the
same determinant and trace as the special case diagonal matrix, the proof above is essentially the same.
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Solution:
From Example 8-6 we had the following eigenvalues with the given algebraic multiplicities.

λ1 = 4, M1 = 1

λ2 = 2, M2 = 2 .

So λ1 = 4, λ2 = 2, λ3 = 2 allowing for multiplicities.

Then using Theorem 8-9

detA = λ1λ2λ3 = (4)(2)(2) = 16

tr (A) = λ1 + λ2 + λ3 = 4 + 2 + 2 = 8 .

Direct calculation using the matrix A gives

detA = 2(+1)(9− 1) + 0 + 0 = 16

tr (A) = 2 + 3 + 3 = 8 .

in agreement with the theorem.

Theorem 8-9 can be used in reverse to find eigenvalues in limited cases.

Example 8-15

Find the eigenvalues of a 2× 2 matrix A with detA = −4 and tr (A) = −3.

Solution:
Let λ1 and λ2 be the eigenvalues of the matrix A.
We know that:

λ1 + λ2 = tr (A) = −3

λ1λ2 = detA = −4

Therefore

λ2 = −3− λ1

⇒ λ1(−3− λ1) = −4

−3λ1 − λ2
1 = −4

λ2
1 + 3λ1 − 4 = 0

(λ1 + 4)(λ1 − 1) = 0 .

So λ1 = −4 (in which case λ2 = −3 − (−4) = 1) or λ1 = 1 (in which case λ2 = −3 − 1 = −4).
Therefore the eigenvalues of A are λ = −4 and λ = 1 .
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8.6 Interpreting Eigenvalues and Eigenvectors

We have seen in Section 6.4 that a linear operator L(x) on Rn has a square matrix representation
so that L(x) = LA(x) = Ax. We can cast the discussion of eigenvalues and eigenvectors into linear
operator terminology as follows.

Definition: Let L be a linear operator on Rn. A scalar λ is said to be an eigenvalue of L if there
exists a nonzero vector x in Rn such that:

L(x) = λx .

The nonzero vector x is called an eigenvector of L corresponding to the eigenvalue λ .

Now consider a linear operator such as Si,1/2 on R3. This is a compression by a factor of one half along
the direction of the x-axis. What can we say about the eigenvalues and eigenvectors of this operator?
The eigenvalue problem geometrically asks us to find those nonzero vectors (eigenvectors) that, when
operated upon by L, return a scalar multiple (the eigenvalue) times themselves. Most vectors in R3

will not be eigenvectors of Si,1/2 since their x-components will be compressed by a factor 1/2 while
their orthogonal components will remain unchanged. However if one considers a vector that lies only
along the x-axis, such as u = u1i then Si,1/2(u) = 1

2u1i = 1
2u. We thus conclude that such vectors are

eigenvectors of Si,1/2 with eigenvalue λ = 1/2. Indeed the eigenspace corresponding to λ = 1/2 will be
the vectors directed along the x-axis (i.e. the line) with basis {i}.
Are there other eigenvalues and eigenvectors of Si,1/2? Suppose a vector has zero component along the
x-axis, so u = u2j + u3k. Then this vector would be its own orthogonal projection and it would be
unaffected by the compression. i.e. Si,1/2(u) = u2j + u3k = u = 1u. In other words such a vector will
be an eigenvector corresponding to the eigenvalue λ = 1. The eigenspace corresponding to λ = 1 will
just be these vectors lying in the y-z plane, a basis of which is just {j,k}. As such we see that the
eigenvalues and eigenvectors of a linear operator have important physical interpretations. Moreover,
cast in this linear operator form, we realize that, quite generally, they will be independent of choice of
coordinates. Any compression Sn,k will have an eigenvalue λ = k corresponding to eigenspace with
basis {n} and eigenvalue λ = 1 corresponding to the subspace of dimension n − 1 of vectors in Rn
orthogonal to n.

Example 8-16

The matrix transformation LA on R3 has

A =
1

5

14 12 0
12 21 0
0 0 5

 .
If A has eigenvalue λ1 = 1 with eigenspace basis {(4,−3, 0), (0, 0, 1)} and eigenvalue λ2 = 6 with
eigenspace basis {(3, 4, 0)}, describe the linear operator LA.

Solution:
Vectors parallel to (3, 4, 0) are scaled by a factor of λ2 = 6. The eigenvector (3, 4, 0) is orthogonal to
vectors in the eigenspace of λ1 = 1 since (3, 4, 0) · (4,−3, 0) = 0 and (3, 4, 0) · (0, 0, 1) = 0. Vectors in
the eigenspace of λ1 remain unchanged by LA since the eigenvalue is 1. We conclude that LA is an
expansion by factor k = 6 along the direction of (3, 4, 0). A unit vector in that direction is

n =
1√

32 + 42 + 02
(3, 4, 0) = (3/5, 4/5, 0) .

Thus LA = Sn,6 .
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Example 8-17

What eigenvalues and eigenvectors does the rotation operator Rn,θ in R3 have?

Solution:
The only vector that remains unchanged, short of becoming a scalar multiple of itself, is a vector
directed along the axis of rotation, namely u = un. For such a vector we have

Rn,θ(u) = un = u = 1u .

It follows that λ = 1 is the eigenvalue corresponding to this eigenvector and that the eigenspace
corresponding to λ = 1 is the line directed along the axis of rotation with basis {n} . A rotation
matrix has additional complex-valued eigenvalues and eigenvectors. While the latter do not represent
physical vectors as they are not real-valued, they nevertheless provide useful information about
the rotation as one may determine the plane of rotation from them. The complex eigenvalues
similarly determine the angle of rotation. Complex eigenvalues and eigenvectors will be discussed in
Section 9.6 .

We note that for matrices arising from linear operators in physical problems, the eigenvalues and
corresponding eigenvectors typically have physical meaning as in our geometrical examples. In R3 two
observers working with the same linear operator but potentially in coordinate systems rotated with
respect to each other would find the same eigenvalues for the operator despite the fact their matrix
representations would be different. Similarly they would find that the corresponding eigenvectors
despite having different coordinates in their respective systems would represent the same vectors in
physical space. Due to this coordinate system independence, eigenvalues of operators arising from
physical problems can represent observable properties and we expect them to show up in analysis
of such problems. Since by Theorem 8-9 the determinant and trace of a matrix depends only on its
eigenvalues, these too are properties of the operator that are independent of the matrix representation
used by each observer and thus typically have a physical meaning.
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8.7 Interpreting Diagonalization

Continuing the discussion from the previous section we saw that the compression Si,1/2 had eigenvalue
λ1 = 1/2 with corresponding eigenvector i and eigenvalue λ2 = 1 with corresponding eigenvectors j
and k. Since Si,1/2(i) = 1

2i and Si,1/2(j) = j and Si,1/2(k) = k it follows that the operator equals LA
where

A =

 1
2 0 0
0 1 0
0 0 1

 =

λ1 0 0
0 λ2 0
0 0 λ3

 .
If we had the general operator Sn,k and we chose our coordinate axes so that n = i then the matrix A
would also be diagonal. For a general choice of axes, as we saw in Section 6.4.1, the matrix representation
of Sn,k would be symmetric but not necessarily diagonal.

So if we are working with a linear operator L represented by matrix A in R3 (or more generally Rn) one
might wonder if there is some set of coordinate axes that we might have chosen in which the operator’s
matrix representation would be diagonal. Questions of coordinates in physical space imply a notion of
distance which, in Rn, implies the use of an inner product which we take to be our usual Euclidean dot
product. In that case the answer to the question is that such a system of coordinate axes exists if the
matrix is orthogonally diagonalizable.

Definition: Square matrix A is orthogonally diagonalizable if there exists an orthogonal matrix
P such that

P−1AP = D ,

where D is a diagonal matrix.

Recall that P−1 = PT for an orthogonal matrix so PTAP = D. The orthogonal matrix P provides the
information required to relate the coordinate axes in which the matrix representation is diagonal to
the original axes. As an orthogonal matrix it will be composed of reflections, rotations, and inversions.
The following theorem characterizes all orthogonally diagonalizable matrices.

Theorem 8-10: An n× n matrix A is orthogonally diagonalizable if and only if it is symmetric.

Many useful operators on Rn are symmetric as we have seen and therefore are orthogonally diagonalizable.
Working in a coordinate system in which the operator is diagonal often simplifies calculations. Such
coordinate system transformations requires a more general discussion of vector spaces and their bases
than will be provided at this juncture.2

2We note that the more general criteria of a matrix being merely diagonalizable only guarantees that new coordinate
axes can be chosen in which the matrix representation is diagonal but these axes are no longer necessarily mutually
orthogonal. Lengths of vectors transformed into those coordinates would not, in general, be preserved.
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9.1 Origin of Complex Numbers

The idea of a complex number arose out of the problem of finding solutions to the equation

p(z) = 0

where p(z) = anz
n + an−1z

n−1 + · · ·+ a2z
2 + a1z + a0 is a polynomial of order n (so an 6= 0). The

solutions of this equation, known as the roots or zeros of the polynomial p(z), are useful for factoring
and vice versa. If c is a solution of this equation (so p(c) = 0) this implies (z − c) is a factor of p(z)
and we can write p(z) = (z − c)q(z) where q(z) is a simpler polynomial of order n− 1. However not
every polynomial equation has a real solution. So a quadratic equation like

z2 − 2z + 5 = 0

has no solution since, using the quadratic formula,

z =
−b±

√
b2 − 4ac

2a
=

2±
√

4− 20

2
= 1± 1

2

√
−16

and no real number squares to get -16. Assuming square root obeys the usual properties, namely√
rs =

√
r
√
s, we could write

√
−16 =

√
16
√
−1 = 4

√
−1 and the (non-real) solutions simplify to

z = 1± 4
√
−1 .

Thus the lack of solution for all similar equations reduces to the lack of a square root to -1. While
solutions involving

√
−1 cannot represent anything physical, it was found, when seeking a general

formula for the root of a cubic equation

az3 + bz2 + cz + d = 0 ,

that if one pretended that
√
−1 behaved like any other number it worked, as an intermediary, to finding

real-valued solutions to the cubic equation. In this way
√
−1 had bookkeeping utility in generating

actual (real) solutions to problems. With the development of mathematics axiomatically and the proven
utility of treating

√
−1 as a number, complex numbers were born.1

Definition: A number of the form z = x+ iy where x and y are real numbers and i =
√
−1 is called a

complex number. Here

• x is called the real part of z and is denoted by x = Re(z)

• y is called the imaginary part of z and is denoted by y = Im(z)

Example 9-1

The solutions to the previous quadratic are the complex numbers

z1 = 1 + 4i, z2 = 1− 4i ,

with real and imaginary parts

Re(z1) = 1 Im(z1) = 4 Re(z2) = 1 Im(z2) = −4 .

1It is to be noted that complex numbers are now at the heart of our physical theories. In quantum mechanics, the
physical theory describing atoms and other microscopic phenomenon, the wave function Ψ is a complex scalar field. One
manipulates this field of complex numbers to extract real numbers that describe actual physical measurements.
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9.2 Complex Conjugate

Every complex number z has a complex conjugate.

Definition: The complex conjugate of complex number z = x+ iy is denoted z and is given by

z = x− iy .

Example 9-2

Find the complex conjugates of

1. z = 4 + 3i

2. z = −3 + 5i

3. z = 2i

Solution:

1. z = 4 + 3i =⇒ z = 4− 3i

2. z = −3 + 5i =⇒ z = −3− 5i

3. z = 2i =⇒ z = −2i
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9.3 Operations on Complex Numbers

Let z1 = x1 + iy1 and z2 = x2 + iy2 be complex numbers. For addition and subtraction the i behaves
just like a variable or constant:

Addition: z1 + z2 = (x1 + x2) + i(y1 + y2)

Subtraction: z1 − z2 = (x1 − x2) + i(y1 − y2)

For multiplication of two complex numbers one remembers that i =
√
−1 simplifies powers of i:

Example 9-3

1. i =
√
−1

2. i2 = −1 (definition of square root)

3. i3 = i2i = −i

4. i4 = i2i2 = (−1)(−1) = 1

With this in mind we have

Multiplication: z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1)

Since

z1z2 = (x1 + iy1)(x2 + iy2)

= x1x2 + ix1y2 + iy1x2 + i2y1y2

= x1x2 + i(x1y2 + y1x2)− y1y2

= (x1x2 − y1y2) + i(x1y2 + y1x2) .

Note that complex multiplication is commutative, z1z2 = z2z1 just as for real numbers.

Theorem 9-1: The complex conjugate of a product is the product of the complex conjugates,

z1z2 = z1 z2 .

Evaluation of the quotient of two complex numbers, z1/z2 can be resolved by multiplying the fraction
by 1 = z2/z2 as shown below.

Division:
z1

z2
=
x1x2 + y1y2

x2
2 + y2

2

+ i
x2y1 − x1y2

x2
2 + y2

2
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Since:
z1

z2
=
x1 + iy1

x2 + iy2

=
(x1 + iy1)(x2 − iy2)

(x2 + iy2)(x2 − iy2)

=
x1x2 − ix1y2 + ix2y1 − i2y1y2

x2
2 − ix2y2 + ix2y2 − i2y2

2

=
x1x2 + i(x2y1 − x1y2) + y1y2

x2
2 + y2

2

=
(x1x2 + y1y2) + i(x2y1 − x1y2)

x2
2 + y2

2

=
x1x2 + y1y2

x2
2 + y2

2

+ i
x2y1 − x1y2

x2
2 + y2

2

.

Note that the form of the quotient shows every complex number z has a multiplicative inverse

z−1 =
1

z
=

z

zz
=

x

x2 + y2
− i y

x2 + y2

provided z = x+ iy 6= 0 since then x2 + y2 6= 0, just like for real numbers.2

With this discussion in mind complex arithmetic is readily performed. Note that the above formulas
for multiplication and division need not be memorized. One need only remember that i2 = −1 for
multiplication and to multiply by 1 = z/z to evaluate division by z.

Example 9-4

If z1 = 3− 2i and z2 = 2 + i, evaluate:

1. z1 + z2

2. z1 − z2

3. z1z2

4. z1 z2

5.
z1

z2

Solution:

1. z1 + z2 = (3− 2i) + (2 + i) = 5− i
2. z1 − z2 = (3− 2i)− (2− i) = 1− i
3. z1z2 = (3− 2i)(2 + i) = 6 + 3i− 4i− 2i2 = 6− i− 2(−1) = 6− i− 2 = 8− i
4. z1 z2 = (3 + 2i)(2− i) = 6− 3i+ 4i− 2i2 = 6 + i− 2(−1) = 6 + i+ 2 = 8 + i = z1z2

5.
z1

z2
=

3− 2i

2 + i
=

(3− 2i)(2− i)
(2 + i)(2− i) =

6− 3i− 4i+ 2i2

4− 2i+ 2i− i2 =
6− 7i+ 2(−1)

4− (−1)
=

6− 7i− 2

4 + 1

=
4− 7i

5
=

4

5
− 7

5
i

2Note this, in part, explains why we introduced i such that i2 = −1 as opposed to something else. If i2 = 1 then
there would be nonzero numbers having no multiplicative inverse.
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9.4 Solving Complex Equations

Equations involving complex variables and numbers can be solved using the usual algebraic manipula-
tions.

Example 9-5

Solve the following equations for z.

1. 2z + 3 + 2i = (2 + i)2

2. 3z + i− 2(2z − i) = 2− i

3.
1

z
= 2 + 3i

4. 2z − iz = 2 + i

5. z2 = 4i

Solution:

1. 2z + 3 + 2i = (2 + i)2

2z = (2 + i)2 − 3− 2i

2z = 4 + 4i+ i2 − 3− 2i

2z = 1 + 2i+ (−1)

2z = 2i

z = i

2. 3z + i− 2(2z − i) = 2− i

3z + i− 4z + 2i = 2− 1

−z = 2− i− 3i

−z = 2− 4i

z = −2 + 4i

3. 2z − iz = 2 + i

(2− i)z = 2 + i

z =
2 + i

2− i
z =

(2 + i)(2 + i)

(2− i)(2 + i)

z =
4 + 4i+ i2

4 + 2i− 2i− i2

z =
4 + 4i− 1

4 + 1

z =
3 + 4i

5

z =
3

5
+

4

5
i
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4.
1

z
= 2 + 3i

z =
1

2 + 3i

z =
2− 3i

(2 + 3i)(2− 3i)

z =
2− 3i

4− 6i+ 6i− 9i2

z =
2− 3i

4− 9(−1)

z =
2− 3i

13

z =
2

13
− 3

13
i

5. z2 = 4i
Write z = x+ iy where x and y are real variables. Then

z2 = 4i

(x+ iy)2 = 4i

x2 + 2ixy + i2y2 = 4i

x2 + i(2xy)− y2 = 4i

(x2 − y2) + i(2xy) = 4i{
x2 − y2 = 0

2xy = 4
⇒
{
x2 − y2 = 0

xy = 2

x2 − y2 = 0

x2 = y2

x = ±y

If x = −y, then substitution into xy = 2 gives

(−y)(y) = 2

−y2 = 2

y2 = −2

No solution since y is a real number.

If x = y, then

(y)(y) = 2

y2 = 2

y = ±
√

2

Since x = y, then solutions are z =
√

2 + i
√

2 or z = −
√

2− i
√

2 .

As with any equations the solutions can be checked in the original equation.
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9.5 The Complex Plane

Since a complex number z = x+ iy is composed of two real numbers x and y constituting its real and
imaginary parts, we can consider z to be represented by the ordered pair (x, y). With that in mind we
consider complex numbers to live in the complex plane.

z = x + iy

x = Re(z)

y = Im(z)

y

x

A real number x, which is a special case of a complex number z where Im(z) = 0, lives on the real axis
line of the complex plane.

The distance from the origin of the complex plane to the point z is its magnitude.

z = x + iy
|z|

Re(z)

Im(z)

y

x

Definition: The magnitude or absolute value or modulus of a complex number z = x + iy,
denoted by |z| , is defined to be

|z| =
√
x2 + y2 .

Note that when z is real then |z| = |x+ 0i| =
√
x2 = |x| reduces to the real absolute value.

Example 9-6

Find the magnitude of the given complex number.

1. z = 4 + 2i

x = 4 , y = 2

|z| =
√

42 + 22 =
√

20

|z| = 2
√

5

2. z = −5 + 3i

x = −5 , y = 3

|z| =
√

(−5)2 + 32

|z| =
√

34
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3. z = −2

x = −2 , y = 0

|z| =
√

(−2)2 + 02

|z| =
√

4 = 2

Direct calculation shows the following.

Theorem 9-2: If z is a complex number then |z|2 = zz and |z| = |z| .
Interpreting complex numbers as points in the plane we have the following.

Definition: The distance between two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 is given by:

|z1 − z2| =
√

(x1 − x2)2 + (y1 − y2)2 .

Example 9-7

Find the distance between the complex numbers z1 = 2− 3i and z2 = 3 + i .

Solution:
|z1 − z2| = |(2− 3i)− (3 + i)| = | − 1− 4i| =

√
(−1)2 + (−4)2 =

√
17 .

9.5.1 Polar Representation

z = x + iy

θ

r

Re(z)

Im(z)

y

x

A point in polar coordinates (r, θ) as shown above, satisfies

cos θ =
x

r
⇒ x = r cos θ

sin θ =
y

r
⇒ y = r sin θ

To find r and θ we solve the previous equations.

x2 + y2 = r2 cos2 θ + r2 sin2 θ = r2(cos2 θ + sin2 θ) = r2(1) = r2 ⇒ r =
√
x2 + y2 = |z|

y

x
=
r sin θ

r cos θ
=

sin θ

cos θ
= tan θ ⇒ tan θ =

y

x

Note the quadrant for angle θ which solves this last equation is determined by the position of (x, y) in
the complex plane.
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A complex number z = x+ iy can therefore be written

z = x+ iy = r cos θ + ir sin θ

where r = |z| is the magnitude of z and θ is called the argument of z and is denoted arg (z) . Note
the argument of z is not unique. (It can be replaced by θ+2nπ where n = 0,±1,±2 . . .). However there
exists only one argument θ is in the range −π ≤ θ ≤ π and this is called the principle argument.

Since Euler’s formula states3

eiθ = cos θ + i sin θ

we can simplify the form of z in terms of r and θ.

Definition: The polar form of a complex number z = x+ iy is

z = r(cos θ + i sin θ) = reiθ ,

where r = |z| and θ = arg(z) .

Here e = 2.7182 . . . is the natural constant (Euler’s number).

Example 9-8

Find the polar form of the complex number.

1. z = 2 + 2i
Solution:

x = 2 , y = 2

r =
√
x2 + y2 =

√
22 + 22 =

√
8 = 2

√
2

tan θ =
y

x
=

2

2
= 1 ⇒ θ =

π

4
(Since (2, 2) is in Quadrant I .)

Therefore z = 2 + 2i = 2
√

2ei
π
4 .

2. z = 4i
Solution:

x = 0 , y = 4

r =
√
x2 + y2 =

√
02 + 42 = 4

sin θ = 4 > 0, cos θ = 0 ⇒ θ =
π

2

Therefore z = 4i = 4ei
π
2 .

3. z = −1 +
√

3i

Solution:

x = −1 , y =
√

3

r =
√
x2 + y2 =

√
(−1)2 +

√
3

2
=
√

4 = 2

tan θ =
y

x
=

√
3

−1
= −
√

3 ⇒ θ = π − π

3
=

2π

3
(Since (−1,

√
3) is in Quadrant II .)

Therefore z = −1 +
√

3i = 2ei
2π
3 .

3For readers who have studied series, Euler’s Formula can be proven by plugging iθ for x in the Maclaurin series for
ex, simplifying the powers of i using i2 = −1, and then breaking the resulting terms into the real and imaginary ones.
The Maclaurin series of cosine and sine will be recognized in these pieces.
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The law of exponents,
ewez = ew+z

which holds for complex numbers w and z show the value of the polar form of a complex number for
multiplication, division, and powers.

Theorem 9-3: If z1 = r1e
iθ1 and z2 = r2e

iθ2 , then:

1. z1z2 = r1r2e
i(θ1+θ2)

2.
z1

z2
=
r1

r2
ei(θ1−θ2)

Proof:

z1z2 = r1e
iθ1r2e

iθ2 = r1r2e
iθ1eiθ2 = r1r2e

iθ1+iθ2 = r1r2e
i(θ1+θ2)

Note that for z = reiθ we have z = re−iθ since

z = r(cos θ + i sin θ) = r(cos θ − i sin θ) = r[cos(−θ) + i sin(−θ)] = re−iθ

where we used that cosine is an even function and sine is an odd function. Then

z1

z2
=
z1z2

z2z2
=
r1e

iθ1r2e
−iθ2

r2eiθ2r2e−iθ2
=
r1e

iθ1−iθ2

r2eiθ2−iθ2
=
r1e

i(θ1−θ2)

r2e0
=
r1

r2
ei(θ1−θ2) ,

where we used e0 = 1 .

Note:
The result for multiplication shows that the effect of multiplying a complex number by z = reiθ is to
scale the magnitude by r and rotate the number counterclockwise by an angle θ .

Theorem 9-4: If z = reiθ, then:
zn = rneinθ .

Proof:
Using the usual rules for powers which hold for complex numbers we have:

zn = (reiθ)n = rn(eiθ)n = rneinθ

Letting z = eiθ in the previous theorem gives the following corollary which can be used to prove many
trigonometric identities.

Corollary: (De Moivre’s Theorem)
For any integer n one has

(
eiθ
)n

= einθ, which implies

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ) .
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Example 9-9

If z1 = 2 + 2i = 2
√

2ei
π
4 , z2 = 4i = 4ei

π
2 , and z3 = −1 +

√
3i = 2ei

2π
3 , evaluate the indicated power.

1. (z1)4

Solution:

(z1)4 = (2 + 2i)4 = (2
√

2ei
π
4 )4 = 24(

√
2)4(ei

π
4 )4 = 16(4)(eiπ) = 64eiπ = 64(−1) = −64

2. (z2)10

Solution:

(z2)10 = (4i)10 = (4)10(ei
π
2 )10 = (4)10ei5π = (4)10(eiπ)5 = (4)10(−1)5 = −(4)10

3. (z3)6

Solution:
(z3)6 = (2ei

2π
3 )6 = 26(ei

2π
3 )6 = 64ei4π = 64(ei2π)2 = 64(1)2 = 64

To conclude this section it is easy to confuse complex numbers with other mathematical constructions
that are similar but conceptually different. For instance, it is easy to confuse a vector in R2 with
a complex number since they have two components which add in the same way. However complex
numbers are numbers in that they share the same axioms as real numbers and form a mathematical
field. In particular they have a commutative multiplication that is not possessed by a vector in R2 . As
such we should think of complex numbers in linear algebra as being used in the same way as are real
numbers, namely as entries in a matrix (or potentially a vector) or as scalars that multiply a matrix
(or vector).

A second confusion that is easily made is to think of the polar representation of a complex number as
the same as polar coordinates. While it is true that one derives r and θ in z = reiθ from x and y in the
same way one transforms a function f(x, y) of Cartesian coordinates into a function f̃(r, θ) of polar
coordinates, the underlying coordinate system does not carry with it any of the structure of complex
numbers; there is no i, etc. So transforming from Cartesian to polar coordinates can be generalized in
three dimensions to a transformation from Cartesian coordinates (x, y, z) to spherical-polar coordinates
(r, θ, φ), while no analogue of complex numbers even exists in three dimensions.4 We can be interested
in complex (or real) functions of complex numbers, f(z), and this is the basis of a course in complex
analysis. Here the multiplicative structure of the complex number imbues such functions with rich
properties with wide application. Our rudimentary treatment of complex numbers here is simply to
solve some basic problems that arise in linear algebra as will be shown in the next section.

4Analogues of complex numbers can be created in four dimensions (called quaternions) and eight dimensions (called
octonions). The latter numbers do not satisfy all the field axioms that real and complex numbers do, in particular
their multiplication does not commute. However they too have their useful applications. Historically quaternions were
developed before vectors, and vectors in arbitrary n dimensions arose in part by realizing that the multiplicative structure
of quaternions was not needed for many physical problems.
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9.6 Complex Eigenvalues and Eigenvectors

The Fundamental Theorem of Algebra implies that every polynomial p(x) of order n has n complex
roots (allowing for algebraic multiplicity). This shows that, in general we will find n eigenvalues for
a square matrix A of order n, though some of those values may be complex. A polynomial with real
coefficients having a complex root z will also have z as a root. So complex roots show up in pairs. As
an example, our polynomial from Section 9.1 with real coefficients, p(z) = z2− 2z+ 5, had two complex
roots, namely z = 1 + 4i and its complex conjugate z = 1 − 4i. So if p(z) were the characteristic
polynomial for a 2× 2 matrix, these roots would have been its (complex) eigenvalues. The following
theorem shows that certain matrices are guaranteed to have real eigenvalues.

Theorem 9-5: The eigenvalues of a symmetric matrix with real entries are real.

We can solve for eigenvalues and eigenvectors involving complex eigenvalues using our usual techniques
of solving linear systems, now applied to matrices with complex entries.

Example 9-10

Find the eigenvalues and eigenvectors of the given matrix.

A =

[
0 −1
1 0

]
Solution:

det(A− 2I) = 0

⇒
∣∣∣∣−λ −1

1 −λ

∣∣∣∣ = 0

⇒ λ2 + 1 = 0

⇒
{
λ1 = i

λ2 = −i (complex eigenvalues despite real matrix!)

Next find the eigenvectors by manipulating the matrices with complex numbers in the same way we
did the real matrices.

λ1 = i :
(A− iI)x1 = 0[
−i −1 0

1 −i 0

]
⇓

R1 ↔ R2

[
1 −i 0
−i −1 0

]
⇓

R2 → R2 + iR1

[
1 −i 0
0 −1− i2 0

]
(But i2 = −1.)

⇓[
1 −i 0
0 0 0

]
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• x2 = t

• x1 − ix2 = 0 =⇒ x1 − it = 0 =⇒ x1 = it

Therefore x1 =

[
it
t

]
= t

[
i
1

]
and so {(i, 1)} is a basis for the λ = i eigenspace.

λ2 = −i :

(A− (−i)I)x2 = 0

(A+ iI)x2 = 0[
i −1 0
1 i 0

]
⇓

R1 ↔ R2

[
1 i 0
i −1 0

]
⇓

R2 → R2 − iR1

[
1 i 0
0 −1− i2 0

]
⇓[

1 i 0
0 0 0

]
• x2 = t

• x1 + ix2 = 0 =⇒ x1 + it = 0 =⇒ x1 = −it

Therefore x2 =

[
−it
t

]
= t

[
−i
1

]
and so {(−i, 1)} is a basis for the λ = −i eigenspace.
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license notice. These titles must be distinct from any other section titles.
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statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.
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passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
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previously added by you or by arrangement made by the same entity you are
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on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their Warranty
Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make the
title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant
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the various original documents, forming one section Entitled “History”; likewise
combine any sections Entitled “Acknowledgements”, and any sections Entitled
“Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License in the
various documents with a single copy that is included in the collection, provided
that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the copyright resulting from the compila-
tion is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in
electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of section 4. Replacing Invariant Sec-
tions with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation
of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or
a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”,
or “History”, the requirement (section 4) to Preserve its Title (section 1) will
typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, or distribute it is void, and will automatically terminate your rights
under this License.

However, if you cease all violation of this License, then your license from a par-
ticular copyright holder is reinstated (a) provisionally, unless and until the copy-
right holder explicitly and finally terminates your license, and (b) permanently, if
the copyright holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated per-
manently if the copyright holder notifies you of the violation by some reasonable
means, this is the first time you have received notice of violation of this License
(for any work) from that copyright holder, and you cure the violation prior to 30
days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses
of parties who have received copies or rights from you under this License. If your
rights have been terminated and not permanently reinstated, receipt of a copy of
some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS
LICENSE

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems
or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License “or any
later version” applies to it, you have the option of following the terms and condi-
tions either of that specified version or of any later version that has been published
(not as a draft) by the Free Software Foundation. If the Document does not spec-
ify a version number of this License, you may choose any version ever published
(not as a draft) by the Free Software Foundation. If the Document specifies that
a proxy can decide which future versions of this License can be used, that proxy’s
public statement of acceptance of a version permanently authorizes you to choose
that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World
Wide Web server that publishes copyrightable works and also provides prominent
facilities for anybody to edit those works. A public wiki that anybody can edit is
an example of such a server. A “Massive Multiauthor Collaboration” (or “MMC”)
contained in the site means any set of copyrightable works thus published on the
MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 li-
cense published by Creative Commons Corporation, a not-for-profit corporation
with a principal place of business in San Francisco, California, as well as future
copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part,
as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and
if all works that were first published under this License somewhere other than
this MMC, and subsequently incorporated in whole or in part into the MMC, (1)
had no cover texts or invariant sections, and (2) were thus incorporated prior to
November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009, provided
the MMC is eligible for relicensing.

ADDENDUM: How to use this License for
your documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices just
after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.3 or any later ver-
sion published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the section entitled “GNU Free Docu-
mentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, re-
place the “with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts be-
ing LIST.

If you have Invariant Sections without Cover Texts, or some other combination
of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software li-
cense, such as the GNU General Public License, to permit their use in free soft-
ware.
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